Evaluate
\frac{94283}{64}=1473.171875
Factor
\frac{7 \cdot 13469}{2 ^ {6}} = 1473\frac{11}{64} = 1473.171875
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)94283}\\\end{array}
Use the 1^{st} digit 9 from dividend 94283
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)94283}\\\end{array}
Since 9 is less than 64, use the next digit 4 from dividend 94283 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)94283}\\\end{array}
Use the 2^{nd} digit 4 from dividend 94283
\begin{array}{l}\phantom{64)}01\phantom{4}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}30\\\end{array}
Find closest multiple of 64 to 94. We see that 1 \times 64 = 64 is the nearest. Now subtract 64 from 94 to get reminder 30. Add 1 to quotient.
\begin{array}{l}\phantom{64)}01\phantom{5}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}302\\\end{array}
Use the 3^{rd} digit 2 from dividend 94283
\begin{array}{l}\phantom{64)}014\phantom{6}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}302\\\phantom{64)}\underline{\phantom{}256\phantom{99}}\\\phantom{64)9}46\\\end{array}
Find closest multiple of 64 to 302. We see that 4 \times 64 = 256 is the nearest. Now subtract 256 from 302 to get reminder 46. Add 4 to quotient.
\begin{array}{l}\phantom{64)}014\phantom{7}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}302\\\phantom{64)}\underline{\phantom{}256\phantom{99}}\\\phantom{64)9}468\\\end{array}
Use the 4^{th} digit 8 from dividend 94283
\begin{array}{l}\phantom{64)}0147\phantom{8}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}302\\\phantom{64)}\underline{\phantom{}256\phantom{99}}\\\phantom{64)9}468\\\phantom{64)}\underline{\phantom{9}448\phantom{9}}\\\phantom{64)99}20\\\end{array}
Find closest multiple of 64 to 468. We see that 7 \times 64 = 448 is the nearest. Now subtract 448 from 468 to get reminder 20. Add 7 to quotient.
\begin{array}{l}\phantom{64)}0147\phantom{9}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}302\\\phantom{64)}\underline{\phantom{}256\phantom{99}}\\\phantom{64)9}468\\\phantom{64)}\underline{\phantom{9}448\phantom{9}}\\\phantom{64)99}203\\\end{array}
Use the 5^{th} digit 3 from dividend 94283
\begin{array}{l}\phantom{64)}01473\phantom{10}\\64\overline{)94283}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)}302\\\phantom{64)}\underline{\phantom{}256\phantom{99}}\\\phantom{64)9}468\\\phantom{64)}\underline{\phantom{9}448\phantom{9}}\\\phantom{64)99}203\\\phantom{64)}\underline{\phantom{99}192\phantom{}}\\\phantom{64)999}11\\\end{array}
Find closest multiple of 64 to 203. We see that 3 \times 64 = 192 is the nearest. Now subtract 192 from 203 to get reminder 11. Add 3 to quotient.
\text{Quotient: }1473 \text{Reminder: }11
Since 11 is less than 64, stop the division. The reminder is 11. The topmost line 01473 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1473.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}