Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{785)}\phantom{1}\\785\overline{)942}\\\end{array}
Use the 1^{st} digit 9 from dividend 942
\begin{array}{l}\phantom{785)}0\phantom{2}\\785\overline{)942}\\\end{array}
Since 9 is less than 785, use the next digit 4 from dividend 942 and add 0 to the quotient
\begin{array}{l}\phantom{785)}0\phantom{3}\\785\overline{)942}\\\end{array}
Use the 2^{nd} digit 4 from dividend 942
\begin{array}{l}\phantom{785)}00\phantom{4}\\785\overline{)942}\\\end{array}
Since 94 is less than 785, use the next digit 2 from dividend 942 and add 0 to the quotient
\begin{array}{l}\phantom{785)}00\phantom{5}\\785\overline{)942}\\\end{array}
Use the 3^{rd} digit 2 from dividend 942
\begin{array}{l}\phantom{785)}001\phantom{6}\\785\overline{)942}\\\phantom{785)}\underline{\phantom{}785\phantom{}}\\\phantom{785)}157\\\end{array}
Find closest multiple of 785 to 942. We see that 1 \times 785 = 785 is the nearest. Now subtract 785 from 942 to get reminder 157. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }157
Since 157 is less than 785, stop the division. The reminder is 157. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}