Solve for x
x=\frac{5\sqrt{241}-235}{41}\approx -3.838515281
x=\frac{-5\sqrt{241}-235}{41}\approx -7.624899353
Graph
Share
Copied to clipboard
10x\left(x+10\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 10x\left(x+10\right), the least common multiple of x,10,x+10.
\left(10x^{2}+100x\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Use the distributive property to multiply 10x by x+10.
940x^{2}+9400x+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Use the distributive property to multiply 10x^{2}+100x by 94.
940x^{2}+9400x+2400x+24000=x\left(x+10\right)\times 120+10x\times 120
Use the distributive property to multiply 10x+100 by 240.
940x^{2}+11800x+24000=x\left(x+10\right)\times 120+10x\times 120
Combine 9400x and 2400x to get 11800x.
940x^{2}+11800x+24000=\left(x^{2}+10x\right)\times 120+10x\times 120
Use the distributive property to multiply x by x+10.
940x^{2}+11800x+24000=120x^{2}+1200x+10x\times 120
Use the distributive property to multiply x^{2}+10x by 120.
940x^{2}+11800x+24000=120x^{2}+1200x+1200x
Multiply 10 and 120 to get 1200.
940x^{2}+11800x+24000=120x^{2}+2400x
Combine 1200x and 1200x to get 2400x.
940x^{2}+11800x+24000-120x^{2}=2400x
Subtract 120x^{2} from both sides.
820x^{2}+11800x+24000=2400x
Combine 940x^{2} and -120x^{2} to get 820x^{2}.
820x^{2}+11800x+24000-2400x=0
Subtract 2400x from both sides.
820x^{2}+9400x+24000=0
Combine 11800x and -2400x to get 9400x.
x=\frac{-9400±\sqrt{9400^{2}-4\times 820\times 24000}}{2\times 820}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 820 for a, 9400 for b, and 24000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9400±\sqrt{88360000-4\times 820\times 24000}}{2\times 820}
Square 9400.
x=\frac{-9400±\sqrt{88360000-3280\times 24000}}{2\times 820}
Multiply -4 times 820.
x=\frac{-9400±\sqrt{88360000-78720000}}{2\times 820}
Multiply -3280 times 24000.
x=\frac{-9400±\sqrt{9640000}}{2\times 820}
Add 88360000 to -78720000.
x=\frac{-9400±200\sqrt{241}}{2\times 820}
Take the square root of 9640000.
x=\frac{-9400±200\sqrt{241}}{1640}
Multiply 2 times 820.
x=\frac{200\sqrt{241}-9400}{1640}
Now solve the equation x=\frac{-9400±200\sqrt{241}}{1640} when ± is plus. Add -9400 to 200\sqrt{241}.
x=\frac{5\sqrt{241}-235}{41}
Divide -9400+200\sqrt{241} by 1640.
x=\frac{-200\sqrt{241}-9400}{1640}
Now solve the equation x=\frac{-9400±200\sqrt{241}}{1640} when ± is minus. Subtract 200\sqrt{241} from -9400.
x=\frac{-5\sqrt{241}-235}{41}
Divide -9400-200\sqrt{241} by 1640.
x=\frac{5\sqrt{241}-235}{41} x=\frac{-5\sqrt{241}-235}{41}
The equation is now solved.
10x\left(x+10\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 10x\left(x+10\right), the least common multiple of x,10,x+10.
\left(10x^{2}+100x\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Use the distributive property to multiply 10x by x+10.
940x^{2}+9400x+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Use the distributive property to multiply 10x^{2}+100x by 94.
940x^{2}+9400x+2400x+24000=x\left(x+10\right)\times 120+10x\times 120
Use the distributive property to multiply 10x+100 by 240.
940x^{2}+11800x+24000=x\left(x+10\right)\times 120+10x\times 120
Combine 9400x and 2400x to get 11800x.
940x^{2}+11800x+24000=\left(x^{2}+10x\right)\times 120+10x\times 120
Use the distributive property to multiply x by x+10.
940x^{2}+11800x+24000=120x^{2}+1200x+10x\times 120
Use the distributive property to multiply x^{2}+10x by 120.
940x^{2}+11800x+24000=120x^{2}+1200x+1200x
Multiply 10 and 120 to get 1200.
940x^{2}+11800x+24000=120x^{2}+2400x
Combine 1200x and 1200x to get 2400x.
940x^{2}+11800x+24000-120x^{2}=2400x
Subtract 120x^{2} from both sides.
820x^{2}+11800x+24000=2400x
Combine 940x^{2} and -120x^{2} to get 820x^{2}.
820x^{2}+11800x+24000-2400x=0
Subtract 2400x from both sides.
820x^{2}+9400x+24000=0
Combine 11800x and -2400x to get 9400x.
820x^{2}+9400x=-24000
Subtract 24000 from both sides. Anything subtracted from zero gives its negation.
\frac{820x^{2}+9400x}{820}=-\frac{24000}{820}
Divide both sides by 820.
x^{2}+\frac{9400}{820}x=-\frac{24000}{820}
Dividing by 820 undoes the multiplication by 820.
x^{2}+\frac{470}{41}x=-\frac{24000}{820}
Reduce the fraction \frac{9400}{820} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{470}{41}x=-\frac{1200}{41}
Reduce the fraction \frac{-24000}{820} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{470}{41}x+\left(\frac{235}{41}\right)^{2}=-\frac{1200}{41}+\left(\frac{235}{41}\right)^{2}
Divide \frac{470}{41}, the coefficient of the x term, by 2 to get \frac{235}{41}. Then add the square of \frac{235}{41} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{470}{41}x+\frac{55225}{1681}=-\frac{1200}{41}+\frac{55225}{1681}
Square \frac{235}{41} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{470}{41}x+\frac{55225}{1681}=\frac{6025}{1681}
Add -\frac{1200}{41} to \frac{55225}{1681} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{235}{41}\right)^{2}=\frac{6025}{1681}
Factor x^{2}+\frac{470}{41}x+\frac{55225}{1681}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{235}{41}\right)^{2}}=\sqrt{\frac{6025}{1681}}
Take the square root of both sides of the equation.
x+\frac{235}{41}=\frac{5\sqrt{241}}{41} x+\frac{235}{41}=-\frac{5\sqrt{241}}{41}
Simplify.
x=\frac{5\sqrt{241}-235}{41} x=\frac{-5\sqrt{241}-235}{41}
Subtract \frac{235}{41} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}