Evaluate
\frac{469}{12}\approx 39.083333333
Factor
\frac{7 \cdot 67}{2 ^ {2} \cdot 3} = 39\frac{1}{12} = 39.083333333333336
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)938}\\\end{array}
Use the 1^{st} digit 9 from dividend 938
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)938}\\\end{array}
Since 9 is less than 24, use the next digit 3 from dividend 938 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)938}\\\end{array}
Use the 2^{nd} digit 3 from dividend 938
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)938}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}21\\\end{array}
Find closest multiple of 24 to 93. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 93 to get reminder 21. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)938}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}218\\\end{array}
Use the 3^{rd} digit 8 from dividend 938
\begin{array}{l}\phantom{24)}039\phantom{6}\\24\overline{)938}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}218\\\phantom{24)}\underline{\phantom{}216\phantom{}}\\\phantom{24)99}2\\\end{array}
Find closest multiple of 24 to 218. We see that 9 \times 24 = 216 is the nearest. Now subtract 216 from 218 to get reminder 2. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }2
Since 2 is less than 24, stop the division. The reminder is 2. The topmost line 039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}