Evaluate
13
Factor
13
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)936}\\\end{array}
Use the 1^{st} digit 9 from dividend 936
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)936}\\\end{array}
Since 9 is less than 72, use the next digit 3 from dividend 936 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)936}\\\end{array}
Use the 2^{nd} digit 3 from dividend 936
\begin{array}{l}\phantom{72)}01\phantom{4}\\72\overline{)936}\\\phantom{72)}\underline{\phantom{}72\phantom{9}}\\\phantom{72)}21\\\end{array}
Find closest multiple of 72 to 93. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 93 to get reminder 21. Add 1 to quotient.
\begin{array}{l}\phantom{72)}01\phantom{5}\\72\overline{)936}\\\phantom{72)}\underline{\phantom{}72\phantom{9}}\\\phantom{72)}216\\\end{array}
Use the 3^{rd} digit 6 from dividend 936
\begin{array}{l}\phantom{72)}013\phantom{6}\\72\overline{)936}\\\phantom{72)}\underline{\phantom{}72\phantom{9}}\\\phantom{72)}216\\\phantom{72)}\underline{\phantom{}216\phantom{}}\\\phantom{72)999}0\\\end{array}
Find closest multiple of 72 to 216. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 216 to get reminder 0. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }0
Since 0 is less than 72, stop the division. The reminder is 0. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}