92.1 \times 52 \% + 85 \times 26 \% + 69.2 \times 188 + 4.3 \times 4 \%
Evaluate
13079.764
Factor
\frac{53 \cdot 103 \cdot 599}{2 \cdot 5 ^ {3}} = 13079\frac{191}{250} = 13079.764
Share
Copied to clipboard
92.1\times \frac{13}{25}+85\times \frac{26}{100}+69.2\times 188+4.3\times \frac{4}{100}
Reduce the fraction \frac{52}{100} to lowest terms by extracting and canceling out 4.
\frac{921}{10}\times \frac{13}{25}+85\times \frac{26}{100}+69.2\times 188+4.3\times \frac{4}{100}
Convert decimal number 92.1 to fraction \frac{921}{10}.
\frac{921\times 13}{10\times 25}+85\times \frac{26}{100}+69.2\times 188+4.3\times \frac{4}{100}
Multiply \frac{921}{10} times \frac{13}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{11973}{250}+85\times \frac{26}{100}+69.2\times 188+4.3\times \frac{4}{100}
Do the multiplications in the fraction \frac{921\times 13}{10\times 25}.
\frac{11973}{250}+85\times \frac{13}{50}+69.2\times 188+4.3\times \frac{4}{100}
Reduce the fraction \frac{26}{100} to lowest terms by extracting and canceling out 2.
\frac{11973}{250}+\frac{85\times 13}{50}+69.2\times 188+4.3\times \frac{4}{100}
Express 85\times \frac{13}{50} as a single fraction.
\frac{11973}{250}+\frac{1105}{50}+69.2\times 188+4.3\times \frac{4}{100}
Multiply 85 and 13 to get 1105.
\frac{11973}{250}+\frac{221}{10}+69.2\times 188+4.3\times \frac{4}{100}
Reduce the fraction \frac{1105}{50} to lowest terms by extracting and canceling out 5.
\frac{11973}{250}+\frac{5525}{250}+69.2\times 188+4.3\times \frac{4}{100}
Least common multiple of 250 and 10 is 250. Convert \frac{11973}{250} and \frac{221}{10} to fractions with denominator 250.
\frac{11973+5525}{250}+69.2\times 188+4.3\times \frac{4}{100}
Since \frac{11973}{250} and \frac{5525}{250} have the same denominator, add them by adding their numerators.
\frac{17498}{250}+69.2\times 188+4.3\times \frac{4}{100}
Add 11973 and 5525 to get 17498.
\frac{8749}{125}+69.2\times 188+4.3\times \frac{4}{100}
Reduce the fraction \frac{17498}{250} to lowest terms by extracting and canceling out 2.
\frac{8749}{125}+13009.6+4.3\times \frac{4}{100}
Multiply 69.2 and 188 to get 13009.6.
\frac{8749}{125}+\frac{65048}{5}+4.3\times \frac{4}{100}
Convert decimal number 13009.6 to fraction \frac{130096}{10}. Reduce the fraction \frac{130096}{10} to lowest terms by extracting and canceling out 2.
\frac{8749}{125}+\frac{1626200}{125}+4.3\times \frac{4}{100}
Least common multiple of 125 and 5 is 125. Convert \frac{8749}{125} and \frac{65048}{5} to fractions with denominator 125.
\frac{8749+1626200}{125}+4.3\times \frac{4}{100}
Since \frac{8749}{125} and \frac{1626200}{125} have the same denominator, add them by adding their numerators.
\frac{1634949}{125}+4.3\times \frac{4}{100}
Add 8749 and 1626200 to get 1634949.
\frac{1634949}{125}+4.3\times \frac{1}{25}
Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
\frac{1634949}{125}+\frac{43}{10}\times \frac{1}{25}
Convert decimal number 4.3 to fraction \frac{43}{10}.
\frac{1634949}{125}+\frac{43\times 1}{10\times 25}
Multiply \frac{43}{10} times \frac{1}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{1634949}{125}+\frac{43}{250}
Do the multiplications in the fraction \frac{43\times 1}{10\times 25}.
\frac{3269898}{250}+\frac{43}{250}
Least common multiple of 125 and 250 is 250. Convert \frac{1634949}{125} and \frac{43}{250} to fractions with denominator 250.
\frac{3269898+43}{250}
Since \frac{3269898}{250} and \frac{43}{250} have the same denominator, add them by adding their numerators.
\frac{3269941}{250}
Add 3269898 and 43 to get 3269941.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}