Solve for a
a=\frac{\sqrt{77581}-281}{92}\approx -0.026808039
a=\frac{-\sqrt{77581}-281}{92}\approx -6.081887614
Share
Copied to clipboard
92a^{2}+562a+75=60
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
92a^{2}+562a+75-60=60-60
Subtract 60 from both sides of the equation.
92a^{2}+562a+75-60=0
Subtracting 60 from itself leaves 0.
92a^{2}+562a+15=0
Subtract 60 from 75.
a=\frac{-562±\sqrt{562^{2}-4\times 92\times 15}}{2\times 92}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 92 for a, 562 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-562±\sqrt{315844-4\times 92\times 15}}{2\times 92}
Square 562.
a=\frac{-562±\sqrt{315844-368\times 15}}{2\times 92}
Multiply -4 times 92.
a=\frac{-562±\sqrt{315844-5520}}{2\times 92}
Multiply -368 times 15.
a=\frac{-562±\sqrt{310324}}{2\times 92}
Add 315844 to -5520.
a=\frac{-562±2\sqrt{77581}}{2\times 92}
Take the square root of 310324.
a=\frac{-562±2\sqrt{77581}}{184}
Multiply 2 times 92.
a=\frac{2\sqrt{77581}-562}{184}
Now solve the equation a=\frac{-562±2\sqrt{77581}}{184} when ± is plus. Add -562 to 2\sqrt{77581}.
a=\frac{\sqrt{77581}-281}{92}
Divide -562+2\sqrt{77581} by 184.
a=\frac{-2\sqrt{77581}-562}{184}
Now solve the equation a=\frac{-562±2\sqrt{77581}}{184} when ± is minus. Subtract 2\sqrt{77581} from -562.
a=\frac{-\sqrt{77581}-281}{92}
Divide -562-2\sqrt{77581} by 184.
a=\frac{\sqrt{77581}-281}{92} a=\frac{-\sqrt{77581}-281}{92}
The equation is now solved.
92a^{2}+562a+75=60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
92a^{2}+562a+75-75=60-75
Subtract 75 from both sides of the equation.
92a^{2}+562a=60-75
Subtracting 75 from itself leaves 0.
92a^{2}+562a=-15
Subtract 75 from 60.
\frac{92a^{2}+562a}{92}=-\frac{15}{92}
Divide both sides by 92.
a^{2}+\frac{562}{92}a=-\frac{15}{92}
Dividing by 92 undoes the multiplication by 92.
a^{2}+\frac{281}{46}a=-\frac{15}{92}
Reduce the fraction \frac{562}{92} to lowest terms by extracting and canceling out 2.
a^{2}+\frac{281}{46}a+\left(\frac{281}{92}\right)^{2}=-\frac{15}{92}+\left(\frac{281}{92}\right)^{2}
Divide \frac{281}{46}, the coefficient of the x term, by 2 to get \frac{281}{92}. Then add the square of \frac{281}{92} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{281}{46}a+\frac{78961}{8464}=-\frac{15}{92}+\frac{78961}{8464}
Square \frac{281}{92} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{281}{46}a+\frac{78961}{8464}=\frac{77581}{8464}
Add -\frac{15}{92} to \frac{78961}{8464} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{281}{92}\right)^{2}=\frac{77581}{8464}
Factor a^{2}+\frac{281}{46}a+\frac{78961}{8464}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{281}{92}\right)^{2}}=\sqrt{\frac{77581}{8464}}
Take the square root of both sides of the equation.
a+\frac{281}{92}=\frac{\sqrt{77581}}{92} a+\frac{281}{92}=-\frac{\sqrt{77581}}{92}
Simplify.
a=\frac{\sqrt{77581}-281}{92} a=\frac{-\sqrt{77581}-281}{92}
Subtract \frac{281}{92} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}