Solve for x (complex solution)
x=\frac{-7+\sqrt{319}i}{184}\approx -0.038043478+0.097068321i
x=\frac{-\sqrt{319}i-7}{184}\approx -0.038043478-0.097068321i
Graph
Share
Copied to clipboard
92x^{2}+7x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 92}}{2\times 92}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 92 for a, 7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 92}}{2\times 92}
Square 7.
x=\frac{-7±\sqrt{49-368}}{2\times 92}
Multiply -4 times 92.
x=\frac{-7±\sqrt{-319}}{2\times 92}
Add 49 to -368.
x=\frac{-7±\sqrt{319}i}{2\times 92}
Take the square root of -319.
x=\frac{-7±\sqrt{319}i}{184}
Multiply 2 times 92.
x=\frac{-7+\sqrt{319}i}{184}
Now solve the equation x=\frac{-7±\sqrt{319}i}{184} when ± is plus. Add -7 to i\sqrt{319}.
x=\frac{-\sqrt{319}i-7}{184}
Now solve the equation x=\frac{-7±\sqrt{319}i}{184} when ± is minus. Subtract i\sqrt{319} from -7.
x=\frac{-7+\sqrt{319}i}{184} x=\frac{-\sqrt{319}i-7}{184}
The equation is now solved.
92x^{2}+7x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
92x^{2}+7x+1-1=-1
Subtract 1 from both sides of the equation.
92x^{2}+7x=-1
Subtracting 1 from itself leaves 0.
\frac{92x^{2}+7x}{92}=-\frac{1}{92}
Divide both sides by 92.
x^{2}+\frac{7}{92}x=-\frac{1}{92}
Dividing by 92 undoes the multiplication by 92.
x^{2}+\frac{7}{92}x+\left(\frac{7}{184}\right)^{2}=-\frac{1}{92}+\left(\frac{7}{184}\right)^{2}
Divide \frac{7}{92}, the coefficient of the x term, by 2 to get \frac{7}{184}. Then add the square of \frac{7}{184} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{92}x+\frac{49}{33856}=-\frac{1}{92}+\frac{49}{33856}
Square \frac{7}{184} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{92}x+\frac{49}{33856}=-\frac{319}{33856}
Add -\frac{1}{92} to \frac{49}{33856} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{184}\right)^{2}=-\frac{319}{33856}
Factor x^{2}+\frac{7}{92}x+\frac{49}{33856}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{184}\right)^{2}}=\sqrt{-\frac{319}{33856}}
Take the square root of both sides of the equation.
x+\frac{7}{184}=\frac{\sqrt{319}i}{184} x+\frac{7}{184}=-\frac{\sqrt{319}i}{184}
Simplify.
x=\frac{-7+\sqrt{319}i}{184} x=\frac{-\sqrt{319}i-7}{184}
Subtract \frac{7}{184} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}