Evaluate
\frac{92}{29}\approx 3.172413793
Factor
\frac{2 ^ {2} \cdot 23}{29} = 3\frac{5}{29} = 3.1724137931034484
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)92}\\\end{array}
Use the 1^{st} digit 9 from dividend 92
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)92}\\\end{array}
Since 9 is less than 29, use the next digit 2 from dividend 92 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)92}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92
\begin{array}{l}\phantom{29)}03\phantom{4}\\29\overline{)92}\\\phantom{29)}\underline{\phantom{}87\phantom{}}\\\phantom{29)9}5\\\end{array}
Find closest multiple of 29 to 92. We see that 3 \times 29 = 87 is the nearest. Now subtract 87 from 92 to get reminder 5. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }5
Since 5 is less than 29, stop the division. The reminder is 5. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}