Evaluate
\frac{92}{15}\approx 6.133333333
Factor
\frac{2 ^ {2} \cdot 23}{3 \cdot 5} = 6\frac{2}{15} = 6.133333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)92}\\\end{array}
Use the 1^{st} digit 9 from dividend 92
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)92}\\\end{array}
Since 9 is less than 15, use the next digit 2 from dividend 92 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)92}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92
\begin{array}{l}\phantom{15)}06\phantom{4}\\15\overline{)92}\\\phantom{15)}\underline{\phantom{}90\phantom{}}\\\phantom{15)9}2\\\end{array}
Find closest multiple of 15 to 92. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 92 to get reminder 2. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }2
Since 2 is less than 15, stop the division. The reminder is 2. The topmost line 06 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}