Evaluate
\frac{2283}{11}\approx 207.545454545
Factor
\frac{3 \cdot 761}{11} = 207\frac{6}{11} = 207.54545454545453
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)9132}\\\end{array}
Use the 1^{st} digit 9 from dividend 9132
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)9132}\\\end{array}
Since 9 is less than 44, use the next digit 1 from dividend 9132 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)9132}\\\end{array}
Use the 2^{nd} digit 1 from dividend 9132
\begin{array}{l}\phantom{44)}02\phantom{4}\\44\overline{)9132}\\\phantom{44)}\underline{\phantom{}88\phantom{99}}\\\phantom{44)9}3\\\end{array}
Find closest multiple of 44 to 91. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 91 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{44)}02\phantom{5}\\44\overline{)9132}\\\phantom{44)}\underline{\phantom{}88\phantom{99}}\\\phantom{44)9}33\\\end{array}
Use the 3^{rd} digit 3 from dividend 9132
\begin{array}{l}\phantom{44)}020\phantom{6}\\44\overline{)9132}\\\phantom{44)}\underline{\phantom{}88\phantom{99}}\\\phantom{44)9}33\\\end{array}
Since 33 is less than 44, use the next digit 2 from dividend 9132 and add 0 to the quotient
\begin{array}{l}\phantom{44)}020\phantom{7}\\44\overline{)9132}\\\phantom{44)}\underline{\phantom{}88\phantom{99}}\\\phantom{44)9}332\\\end{array}
Use the 4^{th} digit 2 from dividend 9132
\begin{array}{l}\phantom{44)}0207\phantom{8}\\44\overline{)9132}\\\phantom{44)}\underline{\phantom{}88\phantom{99}}\\\phantom{44)9}332\\\phantom{44)}\underline{\phantom{9}308\phantom{}}\\\phantom{44)99}24\\\end{array}
Find closest multiple of 44 to 332. We see that 7 \times 44 = 308 is the nearest. Now subtract 308 from 332 to get reminder 24. Add 7 to quotient.
\text{Quotient: }207 \text{Reminder: }24
Since 24 is less than 44, stop the division. The reminder is 24. The topmost line 0207 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 207.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}