Evaluate
\frac{912}{229}\approx 3.982532751
Factor
\frac{2 ^ {4} \cdot 3 \cdot 19}{229} = 3\frac{225}{229} = 3.982532751091703
Share
Copied to clipboard
\begin{array}{l}\phantom{229)}\phantom{1}\\229\overline{)912}\\\end{array}
Use the 1^{st} digit 9 from dividend 912
\begin{array}{l}\phantom{229)}0\phantom{2}\\229\overline{)912}\\\end{array}
Since 9 is less than 229, use the next digit 1 from dividend 912 and add 0 to the quotient
\begin{array}{l}\phantom{229)}0\phantom{3}\\229\overline{)912}\\\end{array}
Use the 2^{nd} digit 1 from dividend 912
\begin{array}{l}\phantom{229)}00\phantom{4}\\229\overline{)912}\\\end{array}
Since 91 is less than 229, use the next digit 2 from dividend 912 and add 0 to the quotient
\begin{array}{l}\phantom{229)}00\phantom{5}\\229\overline{)912}\\\end{array}
Use the 3^{rd} digit 2 from dividend 912
\begin{array}{l}\phantom{229)}003\phantom{6}\\229\overline{)912}\\\phantom{229)}\underline{\phantom{}687\phantom{}}\\\phantom{229)}225\\\end{array}
Find closest multiple of 229 to 912. We see that 3 \times 229 = 687 is the nearest. Now subtract 687 from 912 to get reminder 225. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }225
Since 225 is less than 229, stop the division. The reminder is 225. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}