Solve for λ
\lambda =-\frac{2n^{2}+n-546}{n\left(2n+1\right)}
n\neq -\frac{1}{2}\text{ and }n\neq 0
Solve for n
n=\frac{\sqrt{\left(\lambda +1\right)\left(\lambda +4369\right)}-\lambda -1}{4\left(\lambda +1\right)}
n=-\frac{\sqrt{\left(\lambda +1\right)\left(\lambda +4369\right)}+\lambda +1}{4\left(\lambda +1\right)}\text{, }\lambda >-1\text{ or }\lambda \leq -4369
Share
Copied to clipboard
91\times 6=n\left(\lambda +1\right)\left(2n+1\right)
Multiply both sides by 6.
546=n\left(\lambda +1\right)\left(2n+1\right)
Multiply 91 and 6 to get 546.
546=\left(n\lambda +n\right)\left(2n+1\right)
Use the distributive property to multiply n by \lambda +1.
546=2\lambda n^{2}+n\lambda +2n^{2}+n
Use the distributive property to multiply n\lambda +n by 2n+1.
2\lambda n^{2}+n\lambda +2n^{2}+n=546
Swap sides so that all variable terms are on the left hand side.
2\lambda n^{2}+n\lambda +n=546-2n^{2}
Subtract 2n^{2} from both sides.
2\lambda n^{2}+n\lambda =546-2n^{2}-n
Subtract n from both sides.
\left(2n^{2}+n\right)\lambda =546-2n^{2}-n
Combine all terms containing \lambda .
\left(2n^{2}+n\right)\lambda =546-n-2n^{2}
The equation is in standard form.
\frac{\left(2n^{2}+n\right)\lambda }{2n^{2}+n}=\frac{546-n-2n^{2}}{2n^{2}+n}
Divide both sides by 2n^{2}+n.
\lambda =\frac{546-n-2n^{2}}{2n^{2}+n}
Dividing by 2n^{2}+n undoes the multiplication by 2n^{2}+n.
\lambda =\frac{546-n-2n^{2}}{n\left(2n+1\right)}
Divide 546-2n^{2}-n by 2n^{2}+n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}