9000 \times ( 1 + \frac { x } { 2 } \% ) ^ { 2 } = 9548
Solve for x
x=\frac{4\sqrt{23870}}{3}-200\approx 5.998921249
x=-\frac{4\sqrt{23870}}{3}-200\approx -405.998921249
Graph
Quiz
Quadratic Equation
5 problems similar to:
9000 \times ( 1 + \frac { x } { 2 } \% ) ^ { 2 } = 9548
Share
Copied to clipboard
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{9548}{9000}
Divide both sides by 9000.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{2387}{2250}
Reduce the fraction \frac{9548}{9000} to lowest terms by extracting and canceling out 4.
1+2\times \frac{\frac{x}{2}}{100}+\left(\frac{\frac{x}{2}}{100}\right)^{2}=\frac{2387}{2250}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{\frac{x}{2}}{100}\right)^{2}.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\left(\frac{x}{2}\right)^{2}}{100^{2}}=\frac{2387}{2250}
To raise \frac{\frac{x}{2}}{100} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{100^{2}}=\frac{2387}{2250}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{10000}=\frac{2387}{2250}
Calculate 100 to the power of 2 and get 10000.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{2387}{2250}
Calculate 2 to the power of 2 and get 4.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}-\frac{2387}{2250}=0
Subtract \frac{2387}{2250} from both sides.
-\frac{137}{2250}+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=0
Subtract \frac{2387}{2250} from 1 to get -\frac{137}{2250}.
-5480+1800\times \frac{x}{2}+9\times \frac{x^{2}}{4}=0
Multiply both sides of the equation by 90000, the least common multiple of 2250,100,10000.
-21920+3600x+9x^{2}=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
9x^{2}+3600x-21920=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3600±\sqrt{3600^{2}-4\times 9\left(-21920\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 3600 for b, and -21920 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3600±\sqrt{12960000-4\times 9\left(-21920\right)}}{2\times 9}
Square 3600.
x=\frac{-3600±\sqrt{12960000-36\left(-21920\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-3600±\sqrt{12960000+789120}}{2\times 9}
Multiply -36 times -21920.
x=\frac{-3600±\sqrt{13749120}}{2\times 9}
Add 12960000 to 789120.
x=\frac{-3600±24\sqrt{23870}}{2\times 9}
Take the square root of 13749120.
x=\frac{-3600±24\sqrt{23870}}{18}
Multiply 2 times 9.
x=\frac{24\sqrt{23870}-3600}{18}
Now solve the equation x=\frac{-3600±24\sqrt{23870}}{18} when ± is plus. Add -3600 to 24\sqrt{23870}.
x=\frac{4\sqrt{23870}}{3}-200
Divide -3600+24\sqrt{23870} by 18.
x=\frac{-24\sqrt{23870}-3600}{18}
Now solve the equation x=\frac{-3600±24\sqrt{23870}}{18} when ± is minus. Subtract 24\sqrt{23870} from -3600.
x=-\frac{4\sqrt{23870}}{3}-200
Divide -3600-24\sqrt{23870} by 18.
x=\frac{4\sqrt{23870}}{3}-200 x=-\frac{4\sqrt{23870}}{3}-200
The equation is now solved.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{9548}{9000}
Divide both sides by 9000.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{2387}{2250}
Reduce the fraction \frac{9548}{9000} to lowest terms by extracting and canceling out 4.
1+2\times \frac{\frac{x}{2}}{100}+\left(\frac{\frac{x}{2}}{100}\right)^{2}=\frac{2387}{2250}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{\frac{x}{2}}{100}\right)^{2}.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\left(\frac{x}{2}\right)^{2}}{100^{2}}=\frac{2387}{2250}
To raise \frac{\frac{x}{2}}{100} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{100^{2}}=\frac{2387}{2250}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{10000}=\frac{2387}{2250}
Calculate 100 to the power of 2 and get 10000.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{2387}{2250}
Calculate 2 to the power of 2 and get 4.
2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{2387}{2250}-1
Subtract 1 from both sides.
2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{137}{2250}
Subtract 1 from \frac{2387}{2250} to get \frac{137}{2250}.
1800\times \frac{x}{2}+9\times \frac{x^{2}}{4}=5480
Multiply both sides of the equation by 90000, the least common multiple of 100,10000,2250.
3600x+9x^{2}=21920
Multiply both sides of the equation by 4, the least common multiple of 2,4.
9x^{2}+3600x=21920
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}+3600x}{9}=\frac{21920}{9}
Divide both sides by 9.
x^{2}+\frac{3600}{9}x=\frac{21920}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+400x=\frac{21920}{9}
Divide 3600 by 9.
x^{2}+400x+200^{2}=\frac{21920}{9}+200^{2}
Divide 400, the coefficient of the x term, by 2 to get 200. Then add the square of 200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+400x+40000=\frac{21920}{9}+40000
Square 200.
x^{2}+400x+40000=\frac{381920}{9}
Add \frac{21920}{9} to 40000.
\left(x+200\right)^{2}=\frac{381920}{9}
Factor x^{2}+400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+200\right)^{2}}=\sqrt{\frac{381920}{9}}
Take the square root of both sides of the equation.
x+200=\frac{4\sqrt{23870}}{3} x+200=-\frac{4\sqrt{23870}}{3}
Simplify.
x=\frac{4\sqrt{23870}}{3}-200 x=-\frac{4\sqrt{23870}}{3}-200
Subtract 200 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}