Solve for S
S=\frac{59T_{2}}{112}-\frac{135}{56}
Solve for T_2
T_{2}=\frac{112S+270}{59}
Share
Copied to clipboard
81000-900T_{2}=16800\left(T_{2}-2S\right)
Use the distributive property to multiply 900 by 90-T_{2}.
81000-900T_{2}=16800T_{2}-33600S
Use the distributive property to multiply 16800 by T_{2}-2S.
16800T_{2}-33600S=81000-900T_{2}
Swap sides so that all variable terms are on the left hand side.
-33600S=81000-900T_{2}-16800T_{2}
Subtract 16800T_{2} from both sides.
-33600S=81000-17700T_{2}
Combine -900T_{2} and -16800T_{2} to get -17700T_{2}.
\frac{-33600S}{-33600}=\frac{81000-17700T_{2}}{-33600}
Divide both sides by -33600.
S=\frac{81000-17700T_{2}}{-33600}
Dividing by -33600 undoes the multiplication by -33600.
S=\frac{59T_{2}}{112}-\frac{135}{56}
Divide 81000-17700T_{2} by -33600.
81000-900T_{2}=16800\left(T_{2}-2S\right)
Use the distributive property to multiply 900 by 90-T_{2}.
81000-900T_{2}=16800T_{2}-33600S
Use the distributive property to multiply 16800 by T_{2}-2S.
81000-900T_{2}-16800T_{2}=-33600S
Subtract 16800T_{2} from both sides.
81000-17700T_{2}=-33600S
Combine -900T_{2} and -16800T_{2} to get -17700T_{2}.
-17700T_{2}=-33600S-81000
Subtract 81000 from both sides.
\frac{-17700T_{2}}{-17700}=\frac{-33600S-81000}{-17700}
Divide both sides by -17700.
T_{2}=\frac{-33600S-81000}{-17700}
Dividing by -17700 undoes the multiplication by -17700.
T_{2}=\frac{112S+270}{59}
Divide -33600S-81000 by -17700.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}