Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)900}\\\end{array}
Since 9 is less than 60, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)900}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}30\\\end{array}
Find closest multiple of 60 to 90. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 90 to get reminder 30. Add 1 to quotient.
\begin{array}{l}\phantom{60)}01\phantom{5}\\60\overline{)900}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}300\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{60)}015\phantom{6}\\60\overline{)900}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}300\\\phantom{60)}\underline{\phantom{}300\phantom{}}\\\phantom{60)999}0\\\end{array}
Find closest multiple of 60 to 300. We see that 5 \times 60 = 300 is the nearest. Now subtract 300 from 300 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 60, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}