Evaluate
\frac{900}{41}\approx 21.951219512
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {2}}{41} = 21\frac{39}{41} = 21.951219512195124
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)900}\\\end{array}
Since 9 is less than 41, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{41)}02\phantom{4}\\41\overline{)900}\\\phantom{41)}\underline{\phantom{}82\phantom{9}}\\\phantom{41)9}8\\\end{array}
Find closest multiple of 41 to 90. We see that 2 \times 41 = 82 is the nearest. Now subtract 82 from 90 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{41)}02\phantom{5}\\41\overline{)900}\\\phantom{41)}\underline{\phantom{}82\phantom{9}}\\\phantom{41)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{41)}021\phantom{6}\\41\overline{)900}\\\phantom{41)}\underline{\phantom{}82\phantom{9}}\\\phantom{41)9}80\\\phantom{41)}\underline{\phantom{9}41\phantom{}}\\\phantom{41)9}39\\\end{array}
Find closest multiple of 41 to 80. We see that 1 \times 41 = 41 is the nearest. Now subtract 41 from 80 to get reminder 39. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }39
Since 39 is less than 41, stop the division. The reminder is 39. The topmost line 021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}