Solve for n
n = \frac{\sqrt{15749} + 223}{30} \approx 11.616500661
n = \frac{223 - \sqrt{15749}}{30} \approx 3.250166006
Share
Copied to clipboard
90n^{2}-1338n+3398=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-1338\right)±\sqrt{\left(-1338\right)^{2}-4\times 90\times 3398}}{2\times 90}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90 for a, -1338 for b, and 3398 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1338\right)±\sqrt{1790244-4\times 90\times 3398}}{2\times 90}
Square -1338.
n=\frac{-\left(-1338\right)±\sqrt{1790244-360\times 3398}}{2\times 90}
Multiply -4 times 90.
n=\frac{-\left(-1338\right)±\sqrt{1790244-1223280}}{2\times 90}
Multiply -360 times 3398.
n=\frac{-\left(-1338\right)±\sqrt{566964}}{2\times 90}
Add 1790244 to -1223280.
n=\frac{-\left(-1338\right)±6\sqrt{15749}}{2\times 90}
Take the square root of 566964.
n=\frac{1338±6\sqrt{15749}}{2\times 90}
The opposite of -1338 is 1338.
n=\frac{1338±6\sqrt{15749}}{180}
Multiply 2 times 90.
n=\frac{6\sqrt{15749}+1338}{180}
Now solve the equation n=\frac{1338±6\sqrt{15749}}{180} when ± is plus. Add 1338 to 6\sqrt{15749}.
n=\frac{\sqrt{15749}+223}{30}
Divide 1338+6\sqrt{15749} by 180.
n=\frac{1338-6\sqrt{15749}}{180}
Now solve the equation n=\frac{1338±6\sqrt{15749}}{180} when ± is minus. Subtract 6\sqrt{15749} from 1338.
n=\frac{223-\sqrt{15749}}{30}
Divide 1338-6\sqrt{15749} by 180.
n=\frac{\sqrt{15749}+223}{30} n=\frac{223-\sqrt{15749}}{30}
The equation is now solved.
90n^{2}-1338n+3398=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
90n^{2}-1338n+3398-3398=-3398
Subtract 3398 from both sides of the equation.
90n^{2}-1338n=-3398
Subtracting 3398 from itself leaves 0.
\frac{90n^{2}-1338n}{90}=-\frac{3398}{90}
Divide both sides by 90.
n^{2}+\left(-\frac{1338}{90}\right)n=-\frac{3398}{90}
Dividing by 90 undoes the multiplication by 90.
n^{2}-\frac{223}{15}n=-\frac{3398}{90}
Reduce the fraction \frac{-1338}{90} to lowest terms by extracting and canceling out 6.
n^{2}-\frac{223}{15}n=-\frac{1699}{45}
Reduce the fraction \frac{-3398}{90} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{223}{15}n+\left(-\frac{223}{30}\right)^{2}=-\frac{1699}{45}+\left(-\frac{223}{30}\right)^{2}
Divide -\frac{223}{15}, the coefficient of the x term, by 2 to get -\frac{223}{30}. Then add the square of -\frac{223}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{223}{15}n+\frac{49729}{900}=-\frac{1699}{45}+\frac{49729}{900}
Square -\frac{223}{30} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{223}{15}n+\frac{49729}{900}=\frac{15749}{900}
Add -\frac{1699}{45} to \frac{49729}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{223}{30}\right)^{2}=\frac{15749}{900}
Factor n^{2}-\frac{223}{15}n+\frac{49729}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{223}{30}\right)^{2}}=\sqrt{\frac{15749}{900}}
Take the square root of both sides of the equation.
n-\frac{223}{30}=\frac{\sqrt{15749}}{30} n-\frac{223}{30}=-\frac{\sqrt{15749}}{30}
Simplify.
n=\frac{\sqrt{15749}+223}{30} n=\frac{223-\sqrt{15749}}{30}
Add \frac{223}{30} to both sides of the equation.
x ^ 2 -\frac{223}{15}x +\frac{1699}{45} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 90
r + s = \frac{223}{15} rs = \frac{1699}{45}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{223}{30} - u s = \frac{223}{30} + u
Two numbers r and s sum up to \frac{223}{15} exactly when the average of the two numbers is \frac{1}{2}*\frac{223}{15} = \frac{223}{30}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{223}{30} - u) (\frac{223}{30} + u) = \frac{1699}{45}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1699}{45}
\frac{49729}{900} - u^2 = \frac{1699}{45}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1699}{45}-\frac{49729}{900} = -\frac{15749}{900}
Simplify the expression by subtracting \frac{49729}{900} on both sides
u^2 = \frac{15749}{900} u = \pm\sqrt{\frac{15749}{900}} = \pm \frac{\sqrt{15749}}{30}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{223}{30} - \frac{\sqrt{15749}}{30} = 3.250 s = \frac{223}{30} + \frac{\sqrt{15749}}{30} = 11.617
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}