Solve for n
n\geq 40
Share
Copied to clipboard
90n+6000-120n\leq 4800
Use the distributive property to multiply 120 by 50-n.
-30n+6000\leq 4800
Combine 90n and -120n to get -30n.
-30n\leq 4800-6000
Subtract 6000 from both sides.
-30n\leq -1200
Subtract 6000 from 4800 to get -1200.
n\geq \frac{-1200}{-30}
Divide both sides by -30. Since -30 is negative, the inequality direction is changed.
n\geq 40
Divide -1200 by -30 to get 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}