Solve for x
x = -\frac{361}{90} = -4\frac{1}{90} \approx -4.011111111
x=4
Graph
Share
Copied to clipboard
a+b=1 ab=90\left(-1444\right)=-129960
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 90x^{2}+ax+bx-1444. To find a and b, set up a system to be solved.
-1,129960 -2,64980 -3,43320 -4,32490 -5,25992 -6,21660 -8,16245 -9,14440 -10,12996 -12,10830 -15,8664 -18,7220 -19,6840 -20,6498 -24,5415 -30,4332 -36,3610 -38,3420 -40,3249 -45,2888 -57,2280 -60,2166 -72,1805 -76,1710 -90,1444 -95,1368 -114,1140 -120,1083 -152,855 -171,760 -180,722 -190,684 -228,570 -285,456 -342,380 -360,361
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -129960.
-1+129960=129959 -2+64980=64978 -3+43320=43317 -4+32490=32486 -5+25992=25987 -6+21660=21654 -8+16245=16237 -9+14440=14431 -10+12996=12986 -12+10830=10818 -15+8664=8649 -18+7220=7202 -19+6840=6821 -20+6498=6478 -24+5415=5391 -30+4332=4302 -36+3610=3574 -38+3420=3382 -40+3249=3209 -45+2888=2843 -57+2280=2223 -60+2166=2106 -72+1805=1733 -76+1710=1634 -90+1444=1354 -95+1368=1273 -114+1140=1026 -120+1083=963 -152+855=703 -171+760=589 -180+722=542 -190+684=494 -228+570=342 -285+456=171 -342+380=38 -360+361=1
Calculate the sum for each pair.
a=-360 b=361
The solution is the pair that gives sum 1.
\left(90x^{2}-360x\right)+\left(361x-1444\right)
Rewrite 90x^{2}+x-1444 as \left(90x^{2}-360x\right)+\left(361x-1444\right).
90x\left(x-4\right)+361\left(x-4\right)
Factor out 90x in the first and 361 in the second group.
\left(x-4\right)\left(90x+361\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{361}{90}
To find equation solutions, solve x-4=0 and 90x+361=0.
90x^{2}+x-1444=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 90\left(-1444\right)}}{2\times 90}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90 for a, 1 for b, and -1444 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 90\left(-1444\right)}}{2\times 90}
Square 1.
x=\frac{-1±\sqrt{1-360\left(-1444\right)}}{2\times 90}
Multiply -4 times 90.
x=\frac{-1±\sqrt{1+519840}}{2\times 90}
Multiply -360 times -1444.
x=\frac{-1±\sqrt{519841}}{2\times 90}
Add 1 to 519840.
x=\frac{-1±721}{2\times 90}
Take the square root of 519841.
x=\frac{-1±721}{180}
Multiply 2 times 90.
x=\frac{720}{180}
Now solve the equation x=\frac{-1±721}{180} when ± is plus. Add -1 to 721.
x=4
Divide 720 by 180.
x=-\frac{722}{180}
Now solve the equation x=\frac{-1±721}{180} when ± is minus. Subtract 721 from -1.
x=-\frac{361}{90}
Reduce the fraction \frac{-722}{180} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{361}{90}
The equation is now solved.
90x^{2}+x-1444=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
90x^{2}+x-1444-\left(-1444\right)=-\left(-1444\right)
Add 1444 to both sides of the equation.
90x^{2}+x=-\left(-1444\right)
Subtracting -1444 from itself leaves 0.
90x^{2}+x=1444
Subtract -1444 from 0.
\frac{90x^{2}+x}{90}=\frac{1444}{90}
Divide both sides by 90.
x^{2}+\frac{1}{90}x=\frac{1444}{90}
Dividing by 90 undoes the multiplication by 90.
x^{2}+\frac{1}{90}x=\frac{722}{45}
Reduce the fraction \frac{1444}{90} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{90}x+\left(\frac{1}{180}\right)^{2}=\frac{722}{45}+\left(\frac{1}{180}\right)^{2}
Divide \frac{1}{90}, the coefficient of the x term, by 2 to get \frac{1}{180}. Then add the square of \frac{1}{180} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{90}x+\frac{1}{32400}=\frac{722}{45}+\frac{1}{32400}
Square \frac{1}{180} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{90}x+\frac{1}{32400}=\frac{519841}{32400}
Add \frac{722}{45} to \frac{1}{32400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{180}\right)^{2}=\frac{519841}{32400}
Factor x^{2}+\frac{1}{90}x+\frac{1}{32400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{180}\right)^{2}}=\sqrt{\frac{519841}{32400}}
Take the square root of both sides of the equation.
x+\frac{1}{180}=\frac{721}{180} x+\frac{1}{180}=-\frac{721}{180}
Simplify.
x=4 x=-\frac{361}{90}
Subtract \frac{1}{180} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}