Solve for t
t = \frac{\sqrt{721} - 19}{2} \approx 3.925721582
t=\frac{-\sqrt{721}-19}{2}\approx -22.925721582
Share
Copied to clipboard
90=19t+t^{2}
Multiply \frac{1}{2} and 2 to get 1.
19t+t^{2}=90
Swap sides so that all variable terms are on the left hand side.
19t+t^{2}-90=0
Subtract 90 from both sides.
t^{2}+19t-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-19±\sqrt{19^{2}-4\left(-90\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-19±\sqrt{361-4\left(-90\right)}}{2}
Square 19.
t=\frac{-19±\sqrt{361+360}}{2}
Multiply -4 times -90.
t=\frac{-19±\sqrt{721}}{2}
Add 361 to 360.
t=\frac{\sqrt{721}-19}{2}
Now solve the equation t=\frac{-19±\sqrt{721}}{2} when ± is plus. Add -19 to \sqrt{721}.
t=\frac{-\sqrt{721}-19}{2}
Now solve the equation t=\frac{-19±\sqrt{721}}{2} when ± is minus. Subtract \sqrt{721} from -19.
t=\frac{\sqrt{721}-19}{2} t=\frac{-\sqrt{721}-19}{2}
The equation is now solved.
90=19t+t^{2}
Multiply \frac{1}{2} and 2 to get 1.
19t+t^{2}=90
Swap sides so that all variable terms are on the left hand side.
t^{2}+19t=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}+19t+\left(\frac{19}{2}\right)^{2}=90+\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+19t+\frac{361}{4}=90+\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+19t+\frac{361}{4}=\frac{721}{4}
Add 90 to \frac{361}{4}.
\left(t+\frac{19}{2}\right)^{2}=\frac{721}{4}
Factor t^{2}+19t+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{19}{2}\right)^{2}}=\sqrt{\frac{721}{4}}
Take the square root of both sides of the equation.
t+\frac{19}{2}=\frac{\sqrt{721}}{2} t+\frac{19}{2}=-\frac{\sqrt{721}}{2}
Simplify.
t=\frac{\sqrt{721}-19}{2} t=\frac{-\sqrt{721}-19}{2}
Subtract \frac{19}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}