90 = 1.49 x + 6 \%
Solve for x
x = \frac{8994}{149} = 60\frac{54}{149} \approx 60.362416107
Graph
Share
Copied to clipboard
90=1.49x+\frac{3}{50}
Reduce the fraction \frac{6}{100} to lowest terms by extracting and canceling out 2.
1.49x+\frac{3}{50}=90
Swap sides so that all variable terms are on the left hand side.
1.49x=90-\frac{3}{50}
Subtract \frac{3}{50} from both sides.
1.49x=\frac{4500}{50}-\frac{3}{50}
Convert 90 to fraction \frac{4500}{50}.
1.49x=\frac{4500-3}{50}
Since \frac{4500}{50} and \frac{3}{50} have the same denominator, subtract them by subtracting their numerators.
1.49x=\frac{4497}{50}
Subtract 3 from 4500 to get 4497.
x=\frac{\frac{4497}{50}}{1.49}
Divide both sides by 1.49.
x=\frac{4497}{50\times 1.49}
Express \frac{\frac{4497}{50}}{1.49} as a single fraction.
x=\frac{4497}{74.5}
Multiply 50 and 1.49 to get 74.5.
x=\frac{44970}{745}
Expand \frac{4497}{74.5} by multiplying both numerator and the denominator by 10.
x=\frac{8994}{149}
Reduce the fraction \frac{44970}{745} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}