Solve for x
x=-4
Graph
Share
Copied to clipboard
9-\left(\frac{3}{2}+\frac{2}{2}\right)\times 9+12\times \frac{3}{2}+x=\frac{1}{2}
Convert 1 to fraction \frac{2}{2}.
9-\frac{3+2}{2}\times 9+12\times \frac{3}{2}+x=\frac{1}{2}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
9-\frac{5}{2}\times 9+12\times \frac{3}{2}+x=\frac{1}{2}
Add 3 and 2 to get 5.
9-\frac{5\times 9}{2}+12\times \frac{3}{2}+x=\frac{1}{2}
Express \frac{5}{2}\times 9 as a single fraction.
9-\frac{45}{2}+12\times \frac{3}{2}+x=\frac{1}{2}
Multiply 5 and 9 to get 45.
\frac{18}{2}-\frac{45}{2}+12\times \frac{3}{2}+x=\frac{1}{2}
Convert 9 to fraction \frac{18}{2}.
\frac{18-45}{2}+12\times \frac{3}{2}+x=\frac{1}{2}
Since \frac{18}{2} and \frac{45}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{27}{2}+12\times \frac{3}{2}+x=\frac{1}{2}
Subtract 45 from 18 to get -27.
-\frac{27}{2}+\frac{12\times 3}{2}+x=\frac{1}{2}
Express 12\times \frac{3}{2} as a single fraction.
-\frac{27}{2}+\frac{36}{2}+x=\frac{1}{2}
Multiply 12 and 3 to get 36.
-\frac{27}{2}+18+x=\frac{1}{2}
Divide 36 by 2 to get 18.
-\frac{27}{2}+\frac{36}{2}+x=\frac{1}{2}
Convert 18 to fraction \frac{36}{2}.
\frac{-27+36}{2}+x=\frac{1}{2}
Since -\frac{27}{2} and \frac{36}{2} have the same denominator, add them by adding their numerators.
\frac{9}{2}+x=\frac{1}{2}
Add -27 and 36 to get 9.
x=\frac{1}{2}-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
x=\frac{1-9}{2}
Since \frac{1}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
x=\frac{-8}{2}
Subtract 9 from 1 to get -8.
x=-4
Divide -8 by 2 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}