Solve for x
x=\frac{17}{9-y}
y\neq 9
Solve for y
y=9-\frac{17}{x}
x\neq 0
Graph
Share
Copied to clipboard
9x-9+6=xy+14
Use the distributive property to multiply 9 by x-1.
9x-3=xy+14
Add -9 and 6 to get -3.
9x-3-xy=14
Subtract xy from both sides.
9x-xy=14+3
Add 3 to both sides.
9x-xy=17
Add 14 and 3 to get 17.
\left(9-y\right)x=17
Combine all terms containing x.
\frac{\left(9-y\right)x}{9-y}=\frac{17}{9-y}
Divide both sides by -y+9.
x=\frac{17}{9-y}
Dividing by -y+9 undoes the multiplication by -y+9.
9x-9+6=xy+14
Use the distributive property to multiply 9 by x-1.
9x-3=xy+14
Add -9 and 6 to get -3.
xy+14=9x-3
Swap sides so that all variable terms are on the left hand side.
xy=9x-3-14
Subtract 14 from both sides.
xy=9x-17
Subtract 14 from -3 to get -17.
\frac{xy}{x}=\frac{9x-17}{x}
Divide both sides by x.
y=\frac{9x-17}{x}
Dividing by x undoes the multiplication by x.
y=9-\frac{17}{x}
Divide 9x-17 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}