Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(3y^{2}-2y\right)
Factor out 3.
y\left(3y-2\right)
Consider 3y^{2}-2y. Factor out y.
3y\left(3y-2\right)
Rewrite the complete factored expression.
9y^{2}-6y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-6\right)±6}{2\times 9}
Take the square root of \left(-6\right)^{2}.
y=\frac{6±6}{2\times 9}
The opposite of -6 is 6.
y=\frac{6±6}{18}
Multiply 2 times 9.
y=\frac{12}{18}
Now solve the equation y=\frac{6±6}{18} when ± is plus. Add 6 to 6.
y=\frac{2}{3}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
y=\frac{0}{18}
Now solve the equation y=\frac{6±6}{18} when ± is minus. Subtract 6 from 6.
y=0
Divide 0 by 18.
9y^{2}-6y=9\left(y-\frac{2}{3}\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and 0 for x_{2}.
9y^{2}-6y=9\times \frac{3y-2}{3}y
Subtract \frac{2}{3} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
9y^{2}-6y=3\left(3y-2\right)y
Cancel out 3, the greatest common factor in 9 and 3.