Solve for x
x=\frac{\sqrt{37}+1}{18}\approx 0.393486807
x=\frac{1-\sqrt{37}}{18}\approx -0.282375696
Graph
Share
Copied to clipboard
9xx-1=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
9x^{2}-1=x
Multiply x and x to get x^{2}.
9x^{2}-1-x=0
Subtract x from both sides.
9x^{2}-x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 9\left(-1\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-36\left(-1\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-1\right)±\sqrt{1+36}}{2\times 9}
Multiply -36 times -1.
x=\frac{-\left(-1\right)±\sqrt{37}}{2\times 9}
Add 1 to 36.
x=\frac{1±\sqrt{37}}{2\times 9}
The opposite of -1 is 1.
x=\frac{1±\sqrt{37}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{37}+1}{18}
Now solve the equation x=\frac{1±\sqrt{37}}{18} when ± is plus. Add 1 to \sqrt{37}.
x=\frac{1-\sqrt{37}}{18}
Now solve the equation x=\frac{1±\sqrt{37}}{18} when ± is minus. Subtract \sqrt{37} from 1.
x=\frac{\sqrt{37}+1}{18} x=\frac{1-\sqrt{37}}{18}
The equation is now solved.
9xx-1=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
9x^{2}-1=x
Multiply x and x to get x^{2}.
9x^{2}-1-x=0
Subtract x from both sides.
9x^{2}-x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{9x^{2}-x}{9}=\frac{1}{9}
Divide both sides by 9.
x^{2}-\frac{1}{9}x=\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{1}{9}x+\left(-\frac{1}{18}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{18}\right)^{2}
Divide -\frac{1}{9}, the coefficient of the x term, by 2 to get -\frac{1}{18}. Then add the square of -\frac{1}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{9}x+\frac{1}{324}=\frac{1}{9}+\frac{1}{324}
Square -\frac{1}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{9}x+\frac{1}{324}=\frac{37}{324}
Add \frac{1}{9} to \frac{1}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{18}\right)^{2}=\frac{37}{324}
Factor x^{2}-\frac{1}{9}x+\frac{1}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{18}\right)^{2}}=\sqrt{\frac{37}{324}}
Take the square root of both sides of the equation.
x-\frac{1}{18}=\frac{\sqrt{37}}{18} x-\frac{1}{18}=-\frac{\sqrt{37}}{18}
Simplify.
x=\frac{\sqrt{37}+1}{18} x=\frac{1-\sqrt{37}}{18}
Add \frac{1}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}