Solve for x
x = \frac{5 \sqrt{265} + 35}{18} \approx 6.466339054
x=\frac{35-5\sqrt{265}}{18}\approx -2.577450166
Graph
Share
Copied to clipboard
9x^{2}-35x=150
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}-35x-150=150-150
Subtract 150 from both sides of the equation.
9x^{2}-35x-150=0
Subtracting 150 from itself leaves 0.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 9\left(-150\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -35 for b, and -150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 9\left(-150\right)}}{2\times 9}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-36\left(-150\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-35\right)±\sqrt{1225+5400}}{2\times 9}
Multiply -36 times -150.
x=\frac{-\left(-35\right)±\sqrt{6625}}{2\times 9}
Add 1225 to 5400.
x=\frac{-\left(-35\right)±5\sqrt{265}}{2\times 9}
Take the square root of 6625.
x=\frac{35±5\sqrt{265}}{2\times 9}
The opposite of -35 is 35.
x=\frac{35±5\sqrt{265}}{18}
Multiply 2 times 9.
x=\frac{5\sqrt{265}+35}{18}
Now solve the equation x=\frac{35±5\sqrt{265}}{18} when ± is plus. Add 35 to 5\sqrt{265}.
x=\frac{35-5\sqrt{265}}{18}
Now solve the equation x=\frac{35±5\sqrt{265}}{18} when ± is minus. Subtract 5\sqrt{265} from 35.
x=\frac{5\sqrt{265}+35}{18} x=\frac{35-5\sqrt{265}}{18}
The equation is now solved.
9x^{2}-35x=150
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}-35x}{9}=\frac{150}{9}
Divide both sides by 9.
x^{2}-\frac{35}{9}x=\frac{150}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{35}{9}x=\frac{50}{3}
Reduce the fraction \frac{150}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{35}{9}x+\left(-\frac{35}{18}\right)^{2}=\frac{50}{3}+\left(-\frac{35}{18}\right)^{2}
Divide -\frac{35}{9}, the coefficient of the x term, by 2 to get -\frac{35}{18}. Then add the square of -\frac{35}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{9}x+\frac{1225}{324}=\frac{50}{3}+\frac{1225}{324}
Square -\frac{35}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{9}x+\frac{1225}{324}=\frac{6625}{324}
Add \frac{50}{3} to \frac{1225}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{18}\right)^{2}=\frac{6625}{324}
Factor x^{2}-\frac{35}{9}x+\frac{1225}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{18}\right)^{2}}=\sqrt{\frac{6625}{324}}
Take the square root of both sides of the equation.
x-\frac{35}{18}=\frac{5\sqrt{265}}{18} x-\frac{35}{18}=-\frac{5\sqrt{265}}{18}
Simplify.
x=\frac{5\sqrt{265}+35}{18} x=\frac{35-5\sqrt{265}}{18}
Add \frac{35}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}