Solve for x (complex solution)
x=\frac{5+5\sqrt{47}i}{6}\approx 0.833333333+5.7130455i
x=\frac{-5\sqrt{47}i+5}{6}\approx 0.833333333-5.7130455i
Graph
Share
Copied to clipboard
9x^{2}-15x+300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9\times 300}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -15 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9\times 300}}{2\times 9}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-36\times 300}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-15\right)±\sqrt{225-10800}}{2\times 9}
Multiply -36 times 300.
x=\frac{-\left(-15\right)±\sqrt{-10575}}{2\times 9}
Add 225 to -10800.
x=\frac{-\left(-15\right)±15\sqrt{47}i}{2\times 9}
Take the square root of -10575.
x=\frac{15±15\sqrt{47}i}{2\times 9}
The opposite of -15 is 15.
x=\frac{15±15\sqrt{47}i}{18}
Multiply 2 times 9.
x=\frac{15+15\sqrt{47}i}{18}
Now solve the equation x=\frac{15±15\sqrt{47}i}{18} when ± is plus. Add 15 to 15i\sqrt{47}.
x=\frac{5+5\sqrt{47}i}{6}
Divide 15+15i\sqrt{47} by 18.
x=\frac{-15\sqrt{47}i+15}{18}
Now solve the equation x=\frac{15±15\sqrt{47}i}{18} when ± is minus. Subtract 15i\sqrt{47} from 15.
x=\frac{-5\sqrt{47}i+5}{6}
Divide 15-15i\sqrt{47} by 18.
x=\frac{5+5\sqrt{47}i}{6} x=\frac{-5\sqrt{47}i+5}{6}
The equation is now solved.
9x^{2}-15x+300=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-15x+300-300=-300
Subtract 300 from both sides of the equation.
9x^{2}-15x=-300
Subtracting 300 from itself leaves 0.
\frac{9x^{2}-15x}{9}=-\frac{300}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{15}{9}\right)x=-\frac{300}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{5}{3}x=-\frac{300}{9}
Reduce the fraction \frac{-15}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{3}x=-\frac{100}{3}
Reduce the fraction \frac{-300}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{100}{3}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{100}{3}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{1175}{36}
Add -\frac{100}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=-\frac{1175}{36}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{1175}{36}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{5\sqrt{47}i}{6} x-\frac{5}{6}=-\frac{5\sqrt{47}i}{6}
Simplify.
x=\frac{5+5\sqrt{47}i}{6} x=\frac{-5\sqrt{47}i+5}{6}
Add \frac{5}{6} to both sides of the equation.
x ^ 2 -\frac{5}{3}x +\frac{100}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{5}{3} rs = \frac{100}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{6} - u s = \frac{5}{6} + u
Two numbers r and s sum up to \frac{5}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{3} = \frac{5}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{6} - u) (\frac{5}{6} + u) = \frac{100}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{100}{3}
\frac{25}{36} - u^2 = \frac{100}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{100}{3}-\frac{25}{36} = \frac{1175}{36}
Simplify the expression by subtracting \frac{25}{36} on both sides
u^2 = -\frac{1175}{36} u = \pm\sqrt{-\frac{1175}{36}} = \pm \frac{\sqrt{1175}}{6}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{6} - \frac{\sqrt{1175}}{6}i = 0.833 - 5.713i s = \frac{5}{6} + \frac{\sqrt{1175}}{6}i = 0.833 + 5.713i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}