Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

441x^{2}-25=0
Multiply both sides by 49.
\left(21x-5\right)\left(21x+5\right)=0
Consider 441x^{2}-25. Rewrite 441x^{2}-25 as \left(21x\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{21} x=-\frac{5}{21}
To find equation solutions, solve 21x-5=0 and 21x+5=0.
9x^{2}=\frac{25}{49}
Add \frac{25}{49} to both sides. Anything plus zero gives itself.
x^{2}=\frac{\frac{25}{49}}{9}
Divide both sides by 9.
x^{2}=\frac{25}{49\times 9}
Express \frac{\frac{25}{49}}{9} as a single fraction.
x^{2}=\frac{25}{441}
Multiply 49 and 9 to get 441.
x=\frac{5}{21} x=-\frac{5}{21}
Take the square root of both sides of the equation.
9x^{2}-\frac{25}{49}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-\frac{25}{49}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -\frac{25}{49} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-\frac{25}{49}\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-\frac{25}{49}\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{\frac{900}{49}}}{2\times 9}
Multiply -36 times -\frac{25}{49}.
x=\frac{0±\frac{30}{7}}{2\times 9}
Take the square root of \frac{900}{49}.
x=\frac{0±\frac{30}{7}}{18}
Multiply 2 times 9.
x=\frac{5}{21}
Now solve the equation x=\frac{0±\frac{30}{7}}{18} when ± is plus.
x=-\frac{5}{21}
Now solve the equation x=\frac{0±\frac{30}{7}}{18} when ± is minus.
x=\frac{5}{21} x=-\frac{5}{21}
The equation is now solved.