Solve for x
x=\frac{5}{21}\approx 0.238095238
x=-\frac{5}{21}\approx -0.238095238
Graph
Share
Copied to clipboard
441x^{2}-25=0
Multiply both sides by 49.
\left(21x-5\right)\left(21x+5\right)=0
Consider 441x^{2}-25. Rewrite 441x^{2}-25 as \left(21x\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{21} x=-\frac{5}{21}
To find equation solutions, solve 21x-5=0 and 21x+5=0.
9x^{2}=\frac{25}{49}
Add \frac{25}{49} to both sides. Anything plus zero gives itself.
x^{2}=\frac{\frac{25}{49}}{9}
Divide both sides by 9.
x^{2}=\frac{25}{49\times 9}
Express \frac{\frac{25}{49}}{9} as a single fraction.
x^{2}=\frac{25}{441}
Multiply 49 and 9 to get 441.
x=\frac{5}{21} x=-\frac{5}{21}
Take the square root of both sides of the equation.
9x^{2}-\frac{25}{49}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-\frac{25}{49}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -\frac{25}{49} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-\frac{25}{49}\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-\frac{25}{49}\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{\frac{900}{49}}}{2\times 9}
Multiply -36 times -\frac{25}{49}.
x=\frac{0±\frac{30}{7}}{2\times 9}
Take the square root of \frac{900}{49}.
x=\frac{0±\frac{30}{7}}{18}
Multiply 2 times 9.
x=\frac{5}{21}
Now solve the equation x=\frac{0±\frac{30}{7}}{18} when ± is plus.
x=-\frac{5}{21}
Now solve the equation x=\frac{0±\frac{30}{7}}{18} when ± is minus.
x=\frac{5}{21} x=-\frac{5}{21}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}