Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+7-8=0
Subtract 8 from both sides.
9x^{2}-1=0
Subtract 8 from 7 to get -1.
\left(3x-1\right)\left(3x+1\right)=0
Consider 9x^{2}-1. Rewrite 9x^{2}-1 as \left(3x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{3} x=-\frac{1}{3}
To find equation solutions, solve 3x-1=0 and 3x+1=0.
9x^{2}=8-7
Subtract 7 from both sides.
9x^{2}=1
Subtract 7 from 8 to get 1.
x^{2}=\frac{1}{9}
Divide both sides by 9.
x=\frac{1}{3} x=-\frac{1}{3}
Take the square root of both sides of the equation.
9x^{2}+7-8=0
Subtract 8 from both sides.
9x^{2}-1=0
Subtract 8 from 7 to get -1.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-1\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-1\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-1\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{36}}{2\times 9}
Multiply -36 times -1.
x=\frac{0±6}{2\times 9}
Take the square root of 36.
x=\frac{0±6}{18}
Multiply 2 times 9.
x=\frac{1}{3}
Now solve the equation x=\frac{0±6}{18} when ± is plus. Reduce the fraction \frac{6}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{1}{3}
Now solve the equation x=\frac{0±6}{18} when ± is minus. Reduce the fraction \frac{-6}{18} to lowest terms by extracting and canceling out 6.
x=\frac{1}{3} x=-\frac{1}{3}
The equation is now solved.