Solve for x
x = \frac{7 \sqrt{13} - 5}{18} \approx 1.124381052
x=\frac{-7\sqrt{13}-5}{18}\approx -1.679936607
Graph
Share
Copied to clipboard
9x^{2}+5x+3=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}+5x+3-20=20-20
Subtract 20 from both sides of the equation.
9x^{2}+5x+3-20=0
Subtracting 20 from itself leaves 0.
9x^{2}+5x-17=0
Subtract 20 from 3.
x=\frac{-5±\sqrt{5^{2}-4\times 9\left(-17\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 5 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 9\left(-17\right)}}{2\times 9}
Square 5.
x=\frac{-5±\sqrt{25-36\left(-17\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-5±\sqrt{25+612}}{2\times 9}
Multiply -36 times -17.
x=\frac{-5±\sqrt{637}}{2\times 9}
Add 25 to 612.
x=\frac{-5±7\sqrt{13}}{2\times 9}
Take the square root of 637.
x=\frac{-5±7\sqrt{13}}{18}
Multiply 2 times 9.
x=\frac{7\sqrt{13}-5}{18}
Now solve the equation x=\frac{-5±7\sqrt{13}}{18} when ± is plus. Add -5 to 7\sqrt{13}.
x=\frac{-7\sqrt{13}-5}{18}
Now solve the equation x=\frac{-5±7\sqrt{13}}{18} when ± is minus. Subtract 7\sqrt{13} from -5.
x=\frac{7\sqrt{13}-5}{18} x=\frac{-7\sqrt{13}-5}{18}
The equation is now solved.
9x^{2}+5x+3=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+5x+3-3=20-3
Subtract 3 from both sides of the equation.
9x^{2}+5x=20-3
Subtracting 3 from itself leaves 0.
9x^{2}+5x=17
Subtract 3 from 20.
\frac{9x^{2}+5x}{9}=\frac{17}{9}
Divide both sides by 9.
x^{2}+\frac{5}{9}x=\frac{17}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\frac{17}{9}+\left(\frac{5}{18}\right)^{2}
Divide \frac{5}{9}, the coefficient of the x term, by 2 to get \frac{5}{18}. Then add the square of \frac{5}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{17}{9}+\frac{25}{324}
Square \frac{5}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{637}{324}
Add \frac{17}{9} to \frac{25}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{18}\right)^{2}=\frac{637}{324}
Factor x^{2}+\frac{5}{9}x+\frac{25}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{637}{324}}
Take the square root of both sides of the equation.
x+\frac{5}{18}=\frac{7\sqrt{13}}{18} x+\frac{5}{18}=-\frac{7\sqrt{13}}{18}
Simplify.
x=\frac{7\sqrt{13}-5}{18} x=\frac{-7\sqrt{13}-5}{18}
Subtract \frac{5}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}