Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+36x-72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 9\left(-72\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{1296-4\times 9\left(-72\right)}}{2\times 9}
Square 36.
x=\frac{-36±\sqrt{1296-36\left(-72\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-36±\sqrt{1296+2592}}{2\times 9}
Multiply -36 times -72.
x=\frac{-36±\sqrt{3888}}{2\times 9}
Add 1296 to 2592.
x=\frac{-36±36\sqrt{3}}{2\times 9}
Take the square root of 3888.
x=\frac{-36±36\sqrt{3}}{18}
Multiply 2 times 9.
x=\frac{36\sqrt{3}-36}{18}
Now solve the equation x=\frac{-36±36\sqrt{3}}{18} when ± is plus. Add -36 to 36\sqrt{3}.
x=2\sqrt{3}-2
Divide -36+36\sqrt{3} by 18.
x=\frac{-36\sqrt{3}-36}{18}
Now solve the equation x=\frac{-36±36\sqrt{3}}{18} when ± is minus. Subtract 36\sqrt{3} from -36.
x=-2\sqrt{3}-2
Divide -36-36\sqrt{3} by 18.
9x^{2}+36x-72=9\left(x-\left(2\sqrt{3}-2\right)\right)\left(x-\left(-2\sqrt{3}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2+2\sqrt{3} for x_{1} and -2-2\sqrt{3} for x_{2}.
x ^ 2 +4x -8 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = -4 rs = -8
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -2 - u s = -2 + u
Two numbers r and s sum up to -4 exactly when the average of the two numbers is \frac{1}{2}*-4 = -2. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-2 - u) (-2 + u) = -8
To solve for unknown quantity u, substitute these in the product equation rs = -8
4 - u^2 = -8
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -8-4 = -12
Simplify the expression by subtracting 4 on both sides
u^2 = 12 u = \pm\sqrt{12} = \pm \sqrt{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-2 - \sqrt{12} = -5.464 s = -2 + \sqrt{12} = 1.464
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.