Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+12x-6-x^{2}=-7
Subtract x^{2} from both sides.
8x^{2}+12x-6=-7
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+12x-6+7=0
Add 7 to both sides.
8x^{2}+12x+1=0
Add -6 and 7 to get 1.
x=\frac{-12±\sqrt{12^{2}-4\times 8}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 12 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 8}}{2\times 8}
Square 12.
x=\frac{-12±\sqrt{144-32}}{2\times 8}
Multiply -4 times 8.
x=\frac{-12±\sqrt{112}}{2\times 8}
Add 144 to -32.
x=\frac{-12±4\sqrt{7}}{2\times 8}
Take the square root of 112.
x=\frac{-12±4\sqrt{7}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{7}-12}{16}
Now solve the equation x=\frac{-12±4\sqrt{7}}{16} when ± is plus. Add -12 to 4\sqrt{7}.
x=\frac{\sqrt{7}-3}{4}
Divide -12+4\sqrt{7} by 16.
x=\frac{-4\sqrt{7}-12}{16}
Now solve the equation x=\frac{-12±4\sqrt{7}}{16} when ± is minus. Subtract 4\sqrt{7} from -12.
x=\frac{-\sqrt{7}-3}{4}
Divide -12-4\sqrt{7} by 16.
x=\frac{\sqrt{7}-3}{4} x=\frac{-\sqrt{7}-3}{4}
The equation is now solved.
9x^{2}+12x-6-x^{2}=-7
Subtract x^{2} from both sides.
8x^{2}+12x-6=-7
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+12x=-7+6
Add 6 to both sides.
8x^{2}+12x=-1
Add -7 and 6 to get -1.
\frac{8x^{2}+12x}{8}=-\frac{1}{8}
Divide both sides by 8.
x^{2}+\frac{12}{8}x=-\frac{1}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{3}{2}x=-\frac{1}{8}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{1}{8}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{1}{8}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{7}{16}
Add -\frac{1}{8} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{7}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{7}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{7}}{4} x+\frac{3}{4}=-\frac{\sqrt{7}}{4}
Simplify.
x=\frac{\sqrt{7}-3}{4} x=\frac{-\sqrt{7}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.