9 x + 1,2 = ( - \frac { x + 0,8 } { 2 } + 0,8 ) \cdot 10
Solve for x
x=0,2
Graph
Share
Copied to clipboard
18x+2,4=2\left(-\frac{x+0,8}{2}+0,8\right)\times 10
Multiply both sides of the equation by 2.
18x+2,4=20\left(-\frac{x+0,8}{2}+0,8\right)
Multiply 2 and 10 to get 20.
18x+2,4=20\left(-\frac{x+0,8}{2}\right)+16
Use the distributive property to multiply 20 by -\frac{x+0,8}{2}+0,8.
18x+2,4=20\left(-\left(\frac{1}{2}x+0,4\right)\right)+16
Divide each term of x+0,8 by 2 to get \frac{1}{2}x+0,4.
18x+2,4=20\left(-\frac{1}{2}x-0,4\right)+16
To find the opposite of \frac{1}{2}x+0,4, find the opposite of each term.
18x+2,4=20\left(-\frac{1}{2}\right)x-8+16
Use the distributive property to multiply 20 by -\frac{1}{2}x-0,4.
18x+2,4=\frac{20\left(-1\right)}{2}x-8+16
Express 20\left(-\frac{1}{2}\right) as a single fraction.
18x+2,4=\frac{-20}{2}x-8+16
Multiply 20 and -1 to get -20.
18x+2,4=-10x-8+16
Divide -20 by 2 to get -10.
18x+2,4=-10x+8
Add -8 and 16 to get 8.
18x+2,4+10x=8
Add 10x to both sides.
28x+2,4=8
Combine 18x and 10x to get 28x.
28x=8-2,4
Subtract 2,4 from both sides.
28x=5,6
Subtract 2,4 from 8 to get 5,6.
x=\frac{5,6}{28}
Divide both sides by 28.
x=\frac{56}{280}
Expand \frac{5,6}{28} by multiplying both numerator and the denominator by 10.
x=\frac{1}{5}
Reduce the fraction \frac{56}{280} to lowest terms by extracting and canceling out 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}