Solve for u
u=\frac{7}{3}+\frac{2}{3}i\approx 2.333333333+0.666666667i
u=\frac{7}{3}-\frac{2}{3}i\approx 2.333333333-0.666666667i
Share
Copied to clipboard
9u^{2}+3-42u=-50
Subtract 42u from both sides.
9u^{2}+3-42u+50=0
Add 50 to both sides.
9u^{2}+53-42u=0
Add 3 and 50 to get 53.
9u^{2}-42u+53=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 9\times 53}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -42 for b, and 53 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-42\right)±\sqrt{1764-4\times 9\times 53}}{2\times 9}
Square -42.
u=\frac{-\left(-42\right)±\sqrt{1764-36\times 53}}{2\times 9}
Multiply -4 times 9.
u=\frac{-\left(-42\right)±\sqrt{1764-1908}}{2\times 9}
Multiply -36 times 53.
u=\frac{-\left(-42\right)±\sqrt{-144}}{2\times 9}
Add 1764 to -1908.
u=\frac{-\left(-42\right)±12i}{2\times 9}
Take the square root of -144.
u=\frac{42±12i}{2\times 9}
The opposite of -42 is 42.
u=\frac{42±12i}{18}
Multiply 2 times 9.
u=\frac{42+12i}{18}
Now solve the equation u=\frac{42±12i}{18} when ± is plus. Add 42 to 12i.
u=\frac{7}{3}+\frac{2}{3}i
Divide 42+12i by 18.
u=\frac{42-12i}{18}
Now solve the equation u=\frac{42±12i}{18} when ± is minus. Subtract 12i from 42.
u=\frac{7}{3}-\frac{2}{3}i
Divide 42-12i by 18.
u=\frac{7}{3}+\frac{2}{3}i u=\frac{7}{3}-\frac{2}{3}i
The equation is now solved.
9u^{2}+3-42u=-50
Subtract 42u from both sides.
9u^{2}-42u=-50-3
Subtract 3 from both sides.
9u^{2}-42u=-53
Subtract 3 from -50 to get -53.
\frac{9u^{2}-42u}{9}=-\frac{53}{9}
Divide both sides by 9.
u^{2}+\left(-\frac{42}{9}\right)u=-\frac{53}{9}
Dividing by 9 undoes the multiplication by 9.
u^{2}-\frac{14}{3}u=-\frac{53}{9}
Reduce the fraction \frac{-42}{9} to lowest terms by extracting and canceling out 3.
u^{2}-\frac{14}{3}u+\left(-\frac{7}{3}\right)^{2}=-\frac{53}{9}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-\frac{14}{3}u+\frac{49}{9}=\frac{-53+49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
u^{2}-\frac{14}{3}u+\frac{49}{9}=-\frac{4}{9}
Add -\frac{53}{9} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(u-\frac{7}{3}\right)^{2}=-\frac{4}{9}
Factor u^{2}-\frac{14}{3}u+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{7}{3}\right)^{2}}=\sqrt{-\frac{4}{9}}
Take the square root of both sides of the equation.
u-\frac{7}{3}=\frac{2}{3}i u-\frac{7}{3}=-\frac{2}{3}i
Simplify.
u=\frac{7}{3}+\frac{2}{3}i u=\frac{7}{3}-\frac{2}{3}i
Add \frac{7}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}