Solve for s
s=9
s=-9
Share
Copied to clipboard
s^{2}-81=0
Divide both sides by 9.
\left(s-9\right)\left(s+9\right)=0
Consider s^{2}-81. Rewrite s^{2}-81 as s^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
s=9 s=-9
To find equation solutions, solve s-9=0 and s+9=0.
9s^{2}=729
Add 729 to both sides. Anything plus zero gives itself.
s^{2}=\frac{729}{9}
Divide both sides by 9.
s^{2}=81
Divide 729 by 9 to get 81.
s=9 s=-9
Take the square root of both sides of the equation.
9s^{2}-729=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 9\left(-729\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -729 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 9\left(-729\right)}}{2\times 9}
Square 0.
s=\frac{0±\sqrt{-36\left(-729\right)}}{2\times 9}
Multiply -4 times 9.
s=\frac{0±\sqrt{26244}}{2\times 9}
Multiply -36 times -729.
s=\frac{0±162}{2\times 9}
Take the square root of 26244.
s=\frac{0±162}{18}
Multiply 2 times 9.
s=9
Now solve the equation s=\frac{0±162}{18} when ± is plus. Divide 162 by 18.
s=-9
Now solve the equation s=\frac{0±162}{18} when ± is minus. Divide -162 by 18.
s=9 s=-9
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}