Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

m\left(9m+1\right)
Factor out m.
9m^{2}+m=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-1±\sqrt{1^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-1±1}{2\times 9}
Take the square root of 1^{2}.
m=\frac{-1±1}{18}
Multiply 2 times 9.
m=\frac{0}{18}
Now solve the equation m=\frac{-1±1}{18} when ± is plus. Add -1 to 1.
m=0
Divide 0 by 18.
m=-\frac{2}{18}
Now solve the equation m=\frac{-1±1}{18} when ± is minus. Subtract 1 from -1.
m=-\frac{1}{9}
Reduce the fraction \frac{-2}{18} to lowest terms by extracting and canceling out 2.
9m^{2}+m=9m\left(m-\left(-\frac{1}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{9} for x_{2}.
9m^{2}+m=9m\left(m+\frac{1}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9m^{2}+m=9m\times \frac{9m+1}{9}
Add \frac{1}{9} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9m^{2}+m=m\left(9m+1\right)
Cancel out 9, the greatest common factor in 9 and 9.