Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(3k^{2}-7k\right)
Factor out 3.
k\left(3k-7\right)
Consider 3k^{2}-7k. Factor out k.
3k\left(3k-7\right)
Rewrite the complete factored expression.
9k^{2}-21k=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-21\right)±21}{2\times 9}
Take the square root of \left(-21\right)^{2}.
k=\frac{21±21}{2\times 9}
The opposite of -21 is 21.
k=\frac{21±21}{18}
Multiply 2 times 9.
k=\frac{42}{18}
Now solve the equation k=\frac{21±21}{18} when ± is plus. Add 21 to 21.
k=\frac{7}{3}
Reduce the fraction \frac{42}{18} to lowest terms by extracting and canceling out 6.
k=\frac{0}{18}
Now solve the equation k=\frac{21±21}{18} when ± is minus. Subtract 21 from 21.
k=0
Divide 0 by 18.
9k^{2}-21k=9\left(k-\frac{7}{3}\right)k
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{3} for x_{1} and 0 for x_{2}.
9k^{2}-21k=9\times \frac{3k-7}{3}k
Subtract \frac{7}{3} from k by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
9k^{2}-21k=3\left(3k-7\right)k
Cancel out 3, the greatest common factor in 9 and 3.