Solve for h
h<\frac{55}{4}
Share
Copied to clipboard
9h-14+7h<8\left(h+11\right)+8
Use the distributive property to multiply -7 by 2-h.
16h-14<8\left(h+11\right)+8
Combine 9h and 7h to get 16h.
16h-14<8h+88+8
Use the distributive property to multiply 8 by h+11.
16h-14<8h+96
Add 88 and 8 to get 96.
16h-14-8h<96
Subtract 8h from both sides.
8h-14<96
Combine 16h and -8h to get 8h.
8h<96+14
Add 14 to both sides.
8h<110
Add 96 and 14 to get 110.
h<\frac{110}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
h<\frac{55}{4}
Reduce the fraction \frac{110}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}