Solve for K
K=\frac{4-h}{27}
Solve for h
h=4-27K
Share
Copied to clipboard
54K=7h+8-9h
Subtract 9h from both sides.
54K=-2h+8
Combine 7h and -9h to get -2h.
54K=8-2h
The equation is in standard form.
\frac{54K}{54}=\frac{8-2h}{54}
Divide both sides by 54.
K=\frac{8-2h}{54}
Dividing by 54 undoes the multiplication by 54.
K=\frac{4-h}{27}
Divide -2h+8 by 54.
9h+54K-7h=8
Subtract 7h from both sides.
2h+54K=8
Combine 9h and -7h to get 2h.
2h=8-54K
Subtract 54K from both sides.
\frac{2h}{2}=\frac{8-54K}{2}
Divide both sides by 2.
h=\frac{8-54K}{2}
Dividing by 2 undoes the multiplication by 2.
h=4-27K
Divide 8-54K by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}