Factor
3d\left(3d-4\right)\left(d+2\right)
Evaluate
3d\left(3d-4\right)\left(d+2\right)
Share
Copied to clipboard
3\left(3d^{3}+2d^{2}-8d\right)
Factor out 3.
d\left(3d^{2}+2d-8\right)
Consider 3d^{3}+2d^{2}-8d. Factor out d.
a+b=2 ab=3\left(-8\right)=-24
Consider 3d^{2}+2d-8. Factor the expression by grouping. First, the expression needs to be rewritten as 3d^{2}+ad+bd-8. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=-4 b=6
The solution is the pair that gives sum 2.
\left(3d^{2}-4d\right)+\left(6d-8\right)
Rewrite 3d^{2}+2d-8 as \left(3d^{2}-4d\right)+\left(6d-8\right).
d\left(3d-4\right)+2\left(3d-4\right)
Factor out d in the first and 2 in the second group.
\left(3d-4\right)\left(d+2\right)
Factor out common term 3d-4 by using distributive property.
3d\left(3d-4\right)\left(d+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}