Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9\left(c^{2}-2c\right)
Factor out 9.
c\left(c-2\right)
Consider c^{2}-2c. Factor out c.
9c\left(c-2\right)
Rewrite the complete factored expression.
9c^{2}-18c=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-18\right)±18}{2\times 9}
Take the square root of \left(-18\right)^{2}.
c=\frac{18±18}{2\times 9}
The opposite of -18 is 18.
c=\frac{18±18}{18}
Multiply 2 times 9.
c=\frac{36}{18}
Now solve the equation c=\frac{18±18}{18} when ± is plus. Add 18 to 18.
c=2
Divide 36 by 18.
c=\frac{0}{18}
Now solve the equation c=\frac{18±18}{18} when ± is minus. Subtract 18 from 18.
c=0
Divide 0 by 18.
9c^{2}-18c=9\left(c-2\right)c
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 0 for x_{2}.