Solve for c
c=\frac{\sqrt{157}-7}{18}\approx 0.307220227
c=\frac{-\sqrt{157}-7}{18}\approx -1.084998005
Share
Copied to clipboard
9c^{2}+7c-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-7±\sqrt{7^{2}-4\times 9\left(-3\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 7 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-7±\sqrt{49-4\times 9\left(-3\right)}}{2\times 9}
Square 7.
c=\frac{-7±\sqrt{49-36\left(-3\right)}}{2\times 9}
Multiply -4 times 9.
c=\frac{-7±\sqrt{49+108}}{2\times 9}
Multiply -36 times -3.
c=\frac{-7±\sqrt{157}}{2\times 9}
Add 49 to 108.
c=\frac{-7±\sqrt{157}}{18}
Multiply 2 times 9.
c=\frac{\sqrt{157}-7}{18}
Now solve the equation c=\frac{-7±\sqrt{157}}{18} when ± is plus. Add -7 to \sqrt{157}.
c=\frac{-\sqrt{157}-7}{18}
Now solve the equation c=\frac{-7±\sqrt{157}}{18} when ± is minus. Subtract \sqrt{157} from -7.
c=\frac{\sqrt{157}-7}{18} c=\frac{-\sqrt{157}-7}{18}
The equation is now solved.
9c^{2}+7c-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9c^{2}+7c-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
9c^{2}+7c=-\left(-3\right)
Subtracting -3 from itself leaves 0.
9c^{2}+7c=3
Subtract -3 from 0.
\frac{9c^{2}+7c}{9}=\frac{3}{9}
Divide both sides by 9.
c^{2}+\frac{7}{9}c=\frac{3}{9}
Dividing by 9 undoes the multiplication by 9.
c^{2}+\frac{7}{9}c=\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
c^{2}+\frac{7}{9}c+\left(\frac{7}{18}\right)^{2}=\frac{1}{3}+\left(\frac{7}{18}\right)^{2}
Divide \frac{7}{9}, the coefficient of the x term, by 2 to get \frac{7}{18}. Then add the square of \frac{7}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+\frac{7}{9}c+\frac{49}{324}=\frac{1}{3}+\frac{49}{324}
Square \frac{7}{18} by squaring both the numerator and the denominator of the fraction.
c^{2}+\frac{7}{9}c+\frac{49}{324}=\frac{157}{324}
Add \frac{1}{3} to \frac{49}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(c+\frac{7}{18}\right)^{2}=\frac{157}{324}
Factor c^{2}+\frac{7}{9}c+\frac{49}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{7}{18}\right)^{2}}=\sqrt{\frac{157}{324}}
Take the square root of both sides of the equation.
c+\frac{7}{18}=\frac{\sqrt{157}}{18} c+\frac{7}{18}=-\frac{\sqrt{157}}{18}
Simplify.
c=\frac{\sqrt{157}-7}{18} c=\frac{-\sqrt{157}-7}{18}
Subtract \frac{7}{18} from both sides of the equation.
x ^ 2 +\frac{7}{9}x -\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = -\frac{7}{9} rs = -\frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{18} - u s = -\frac{7}{18} + u
Two numbers r and s sum up to -\frac{7}{9} exactly when the average of the two numbers is \frac{1}{2}*-\frac{7}{9} = -\frac{7}{18}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{18} - u) (-\frac{7}{18} + u) = -\frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{3}
\frac{49}{324} - u^2 = -\frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{3}-\frac{49}{324} = -\frac{157}{324}
Simplify the expression by subtracting \frac{49}{324} on both sides
u^2 = \frac{157}{324} u = \pm\sqrt{\frac{157}{324}} = \pm \frac{\sqrt{157}}{18}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{18} - \frac{\sqrt{157}}{18} = -1.085 s = -\frac{7}{18} + \frac{\sqrt{157}}{18} = 0.307
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}