Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

b^{4}\left(9b^{2}-4\right)-25\left(9b^{2}-4\right)
Do the grouping 9b^{6}-4b^{4}-225b^{2}+100=\left(9b^{6}-4b^{4}\right)+\left(-225b^{2}+100\right), and factor out b^{4} in the first and -25 in the second group.
\left(9b^{2}-4\right)\left(b^{4}-25\right)
Factor out common term 9b^{2}-4 by using distributive property.
\left(3b-2\right)\left(3b+2\right)
Consider 9b^{2}-4. Rewrite 9b^{2}-4 as \left(3b\right)^{2}-2^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(b^{2}-5\right)\left(b^{2}+5\right)
Consider b^{4}-25. Rewrite b^{4}-25 as \left(b^{2}\right)^{2}-5^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(b^{2}-5\right)\left(3b-2\right)\left(3b+2\right)\left(b^{2}+5\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: b^{2}-5,b^{2}+5.