Factor
\left(3b-2\right)\left(3b+2\right)\left(b^{2}-5\right)\left(b^{2}+5\right)
Evaluate
9b^{6}-4b^{4}-225b^{2}+100
Share
Copied to clipboard
b^{4}\left(9b^{2}-4\right)-25\left(9b^{2}-4\right)
Do the grouping 9b^{6}-4b^{4}-225b^{2}+100=\left(9b^{6}-4b^{4}\right)+\left(-225b^{2}+100\right), and factor out b^{4} in the first and -25 in the second group.
\left(9b^{2}-4\right)\left(b^{4}-25\right)
Factor out common term 9b^{2}-4 by using distributive property.
\left(3b-2\right)\left(3b+2\right)
Consider 9b^{2}-4. Rewrite 9b^{2}-4 as \left(3b\right)^{2}-2^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(b^{2}-5\right)\left(b^{2}+5\right)
Consider b^{4}-25. Rewrite b^{4}-25 as \left(b^{2}\right)^{2}-5^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(b^{2}-5\right)\left(3b-2\right)\left(3b+2\right)\left(b^{2}+5\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: b^{2}-5,b^{2}+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}