Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

9b^{2}-13b+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 9\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -13 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-13\right)±\sqrt{169-4\times 9\times 9}}{2\times 9}
Square -13.
b=\frac{-\left(-13\right)±\sqrt{169-36\times 9}}{2\times 9}
Multiply -4 times 9.
b=\frac{-\left(-13\right)±\sqrt{169-324}}{2\times 9}
Multiply -36 times 9.
b=\frac{-\left(-13\right)±\sqrt{-155}}{2\times 9}
Add 169 to -324.
b=\frac{-\left(-13\right)±\sqrt{155}i}{2\times 9}
Take the square root of -155.
b=\frac{13±\sqrt{155}i}{2\times 9}
The opposite of -13 is 13.
b=\frac{13±\sqrt{155}i}{18}
Multiply 2 times 9.
b=\frac{13+\sqrt{155}i}{18}
Now solve the equation b=\frac{13±\sqrt{155}i}{18} when ± is plus. Add 13 to i\sqrt{155}.
b=\frac{-\sqrt{155}i+13}{18}
Now solve the equation b=\frac{13±\sqrt{155}i}{18} when ± is minus. Subtract i\sqrt{155} from 13.
b=\frac{13+\sqrt{155}i}{18} b=\frac{-\sqrt{155}i+13}{18}
The equation is now solved.
9b^{2}-13b+9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9b^{2}-13b+9-9=-9
Subtract 9 from both sides of the equation.
9b^{2}-13b=-9
Subtracting 9 from itself leaves 0.
\frac{9b^{2}-13b}{9}=-\frac{9}{9}
Divide both sides by 9.
b^{2}-\frac{13}{9}b=-\frac{9}{9}
Dividing by 9 undoes the multiplication by 9.
b^{2}-\frac{13}{9}b=-1
Divide -9 by 9.
b^{2}-\frac{13}{9}b+\left(-\frac{13}{18}\right)^{2}=-1+\left(-\frac{13}{18}\right)^{2}
Divide -\frac{13}{9}, the coefficient of the x term, by 2 to get -\frac{13}{18}. Then add the square of -\frac{13}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{13}{9}b+\frac{169}{324}=-1+\frac{169}{324}
Square -\frac{13}{18} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{13}{9}b+\frac{169}{324}=-\frac{155}{324}
Add -1 to \frac{169}{324}.
\left(b-\frac{13}{18}\right)^{2}=-\frac{155}{324}
Factor b^{2}-\frac{13}{9}b+\frac{169}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{13}{18}\right)^{2}}=\sqrt{-\frac{155}{324}}
Take the square root of both sides of the equation.
b-\frac{13}{18}=\frac{\sqrt{155}i}{18} b-\frac{13}{18}=-\frac{\sqrt{155}i}{18}
Simplify.
b=\frac{13+\sqrt{155}i}{18} b=\frac{-\sqrt{155}i+13}{18}
Add \frac{13}{18} to both sides of the equation.
x ^ 2 -\frac{13}{9}x +1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{13}{9} rs = 1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{13}{18} - u s = \frac{13}{18} + u
Two numbers r and s sum up to \frac{13}{9} exactly when the average of the two numbers is \frac{1}{2}*\frac{13}{9} = \frac{13}{18}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{13}{18} - u) (\frac{13}{18} + u) = 1
To solve for unknown quantity u, substitute these in the product equation rs = 1
\frac{169}{324} - u^2 = 1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1-\frac{169}{324} = \frac{155}{324}
Simplify the expression by subtracting \frac{169}{324} on both sides
u^2 = -\frac{155}{324} u = \pm\sqrt{-\frac{155}{324}} = \pm \frac{\sqrt{155}}{18}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{13}{18} - \frac{\sqrt{155}}{18}i = 0.722 - 0.692i s = \frac{13}{18} + \frac{\sqrt{155}}{18}i = 0.722 + 0.692i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.