Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

-6n^{2}=-555-9
Subtract 9 from both sides.
-6n^{2}=-564
Subtract 9 from -555 to get -564.
n^{2}=\frac{-564}{-6}
Divide both sides by -6.
n^{2}=94
Divide -564 by -6 to get 94.
n=\sqrt{94} n=-\sqrt{94}
Take the square root of both sides of the equation.
9-6n^{2}+555=0
Add 555 to both sides.
564-6n^{2}=0
Add 9 and 555 to get 564.
-6n^{2}+564=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
n=\frac{0±\sqrt{0^{2}-4\left(-6\right)\times 564}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 0 for b, and 564 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-6\right)\times 564}}{2\left(-6\right)}
Square 0.
n=\frac{0±\sqrt{24\times 564}}{2\left(-6\right)}
Multiply -4 times -6.
n=\frac{0±\sqrt{13536}}{2\left(-6\right)}
Multiply 24 times 564.
n=\frac{0±12\sqrt{94}}{2\left(-6\right)}
Take the square root of 13536.
n=\frac{0±12\sqrt{94}}{-12}
Multiply 2 times -6.
n=-\sqrt{94}
Now solve the equation n=\frac{0±12\sqrt{94}}{-12} when ± is plus.
n=\sqrt{94}
Now solve the equation n=\frac{0±12\sqrt{94}}{-12} when ± is minus.
n=-\sqrt{94} n=\sqrt{94}
The equation is now solved.