9 - 4 : ( - 2,5 ) =
Evaluate
10,6
Factor
\frac{53}{5} = 10\frac{3}{5} = 10.6
Share
Copied to clipboard
9-\frac{40}{-25}
Expand \frac{4}{-2,5} by multiplying both numerator and the denominator by 10.
9-\left(-\frac{8}{5}\right)
Reduce the fraction \frac{40}{-25} to lowest terms by extracting and canceling out 5.
9+\frac{8}{5}
The opposite of -\frac{8}{5} is \frac{8}{5}.
\frac{45}{5}+\frac{8}{5}
Convert 9 to fraction \frac{45}{5}.
\frac{45+8}{5}
Since \frac{45}{5} and \frac{8}{5} have the same denominator, add them by adding their numerators.
\frac{53}{5}
Add 45 and 8 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}