Solve for k
k=\frac{5y+9}{3y+1}
y\neq -\frac{1}{3}
Solve for y
y=-\frac{9-k}{5-3k}
k\neq \frac{5}{3}
Graph
Share
Copied to clipboard
9-\frac{2\left(3k-5\right)}{2}y=k
Express 2\times \frac{3k-5}{2} as a single fraction.
9-\left(3k-5\right)y=k
Cancel out 2 and 2.
9-\left(3ky-5y\right)=k
Use the distributive property to multiply 3k-5 by y.
9-3ky+5y=k
To find the opposite of 3ky-5y, find the opposite of each term.
9-3ky+5y-k=0
Subtract k from both sides.
-3ky+5y-k=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
-3ky-k=-9-5y
Subtract 5y from both sides.
\left(-3y-1\right)k=-9-5y
Combine all terms containing k.
\left(-3y-1\right)k=-5y-9
The equation is in standard form.
\frac{\left(-3y-1\right)k}{-3y-1}=\frac{-5y-9}{-3y-1}
Divide both sides by -3y-1.
k=\frac{-5y-9}{-3y-1}
Dividing by -3y-1 undoes the multiplication by -3y-1.
k=\frac{5y+9}{3y+1}
Divide -9-5y by -3y-1.
9-\frac{2\left(3k-5\right)}{2}y=k
Express 2\times \frac{3k-5}{2} as a single fraction.
9-\left(3k-5\right)y=k
Cancel out 2 and 2.
9-\left(3ky-5y\right)=k
Use the distributive property to multiply 3k-5 by y.
9-3ky+5y=k
To find the opposite of 3ky-5y, find the opposite of each term.
-3ky+5y=k-9
Subtract 9 from both sides.
\left(-3k+5\right)y=k-9
Combine all terms containing y.
\left(5-3k\right)y=k-9
The equation is in standard form.
\frac{\left(5-3k\right)y}{5-3k}=\frac{k-9}{5-3k}
Divide both sides by 5-3k.
y=\frac{k-9}{5-3k}
Dividing by 5-3k undoes the multiplication by 5-3k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}