Solve for x
x = \frac{17}{3} = 5\frac{2}{3} \approx 5.666666667
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Graph
Share
Copied to clipboard
9\left(x^{2}-4x+4\right)-121=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36-121=0
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x-85=0
Subtract 121 from 36 to get -85.
a+b=-36 ab=9\left(-85\right)=-765
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-85. To find a and b, set up a system to be solved.
1,-765 3,-255 5,-153 9,-85 15,-51 17,-45
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -765.
1-765=-764 3-255=-252 5-153=-148 9-85=-76 15-51=-36 17-45=-28
Calculate the sum for each pair.
a=-51 b=15
The solution is the pair that gives sum -36.
\left(9x^{2}-51x\right)+\left(15x-85\right)
Rewrite 9x^{2}-36x-85 as \left(9x^{2}-51x\right)+\left(15x-85\right).
3x\left(3x-17\right)+5\left(3x-17\right)
Factor out 3x in the first and 5 in the second group.
\left(3x-17\right)\left(3x+5\right)
Factor out common term 3x-17 by using distributive property.
x=\frac{17}{3} x=-\frac{5}{3}
To find equation solutions, solve 3x-17=0 and 3x+5=0.
9\left(x^{2}-4x+4\right)-121=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36-121=0
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x-85=0
Subtract 121 from 36 to get -85.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 9\left(-85\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -36 for b, and -85 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 9\left(-85\right)}}{2\times 9}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-36\left(-85\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-36\right)±\sqrt{1296+3060}}{2\times 9}
Multiply -36 times -85.
x=\frac{-\left(-36\right)±\sqrt{4356}}{2\times 9}
Add 1296 to 3060.
x=\frac{-\left(-36\right)±66}{2\times 9}
Take the square root of 4356.
x=\frac{36±66}{2\times 9}
The opposite of -36 is 36.
x=\frac{36±66}{18}
Multiply 2 times 9.
x=\frac{102}{18}
Now solve the equation x=\frac{36±66}{18} when ± is plus. Add 36 to 66.
x=\frac{17}{3}
Reduce the fraction \frac{102}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{30}{18}
Now solve the equation x=\frac{36±66}{18} when ± is minus. Subtract 66 from 36.
x=-\frac{5}{3}
Reduce the fraction \frac{-30}{18} to lowest terms by extracting and canceling out 6.
x=\frac{17}{3} x=-\frac{5}{3}
The equation is now solved.
9\left(x^{2}-4x+4\right)-121=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36-121=0
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x-85=0
Subtract 121 from 36 to get -85.
9x^{2}-36x=85
Add 85 to both sides. Anything plus zero gives itself.
\frac{9x^{2}-36x}{9}=\frac{85}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{36}{9}\right)x=\frac{85}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-4x=\frac{85}{9}
Divide -36 by 9.
x^{2}-4x+\left(-2\right)^{2}=\frac{85}{9}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{85}{9}+4
Square -2.
x^{2}-4x+4=\frac{121}{9}
Add \frac{85}{9} to 4.
\left(x-2\right)^{2}=\frac{121}{9}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x-2=\frac{11}{3} x-2=-\frac{11}{3}
Simplify.
x=\frac{17}{3} x=-\frac{5}{3}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}