Solve for x
x=\frac{3}{5}=0.6
x=9
Graph
Share
Copied to clipboard
9\left(x^{2}-4x+4\right)=\left(2x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36=\left(2x+3\right)^{2}
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
9x^{2}-36x+36-4x^{2}=12x+9
Subtract 4x^{2} from both sides.
5x^{2}-36x+36=12x+9
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-36x+36-12x=9
Subtract 12x from both sides.
5x^{2}-48x+36=9
Combine -36x and -12x to get -48x.
5x^{2}-48x+36-9=0
Subtract 9 from both sides.
5x^{2}-48x+27=0
Subtract 9 from 36 to get 27.
a+b=-48 ab=5\times 27=135
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx+27. To find a and b, set up a system to be solved.
-1,-135 -3,-45 -5,-27 -9,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 135.
-1-135=-136 -3-45=-48 -5-27=-32 -9-15=-24
Calculate the sum for each pair.
a=-45 b=-3
The solution is the pair that gives sum -48.
\left(5x^{2}-45x\right)+\left(-3x+27\right)
Rewrite 5x^{2}-48x+27 as \left(5x^{2}-45x\right)+\left(-3x+27\right).
5x\left(x-9\right)-3\left(x-9\right)
Factor out 5x in the first and -3 in the second group.
\left(x-9\right)\left(5x-3\right)
Factor out common term x-9 by using distributive property.
x=9 x=\frac{3}{5}
To find equation solutions, solve x-9=0 and 5x-3=0.
9\left(x^{2}-4x+4\right)=\left(2x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36=\left(2x+3\right)^{2}
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
9x^{2}-36x+36-4x^{2}=12x+9
Subtract 4x^{2} from both sides.
5x^{2}-36x+36=12x+9
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-36x+36-12x=9
Subtract 12x from both sides.
5x^{2}-48x+36=9
Combine -36x and -12x to get -48x.
5x^{2}-48x+36-9=0
Subtract 9 from both sides.
5x^{2}-48x+27=0
Subtract 9 from 36 to get 27.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 5\times 27}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -48 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 5\times 27}}{2\times 5}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-20\times 27}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-48\right)±\sqrt{2304-540}}{2\times 5}
Multiply -20 times 27.
x=\frac{-\left(-48\right)±\sqrt{1764}}{2\times 5}
Add 2304 to -540.
x=\frac{-\left(-48\right)±42}{2\times 5}
Take the square root of 1764.
x=\frac{48±42}{2\times 5}
The opposite of -48 is 48.
x=\frac{48±42}{10}
Multiply 2 times 5.
x=\frac{90}{10}
Now solve the equation x=\frac{48±42}{10} when ± is plus. Add 48 to 42.
x=9
Divide 90 by 10.
x=\frac{6}{10}
Now solve the equation x=\frac{48±42}{10} when ± is minus. Subtract 42 from 48.
x=\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
x=9 x=\frac{3}{5}
The equation is now solved.
9\left(x^{2}-4x+4\right)=\left(2x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36=\left(2x+3\right)^{2}
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
9x^{2}-36x+36-4x^{2}=12x+9
Subtract 4x^{2} from both sides.
5x^{2}-36x+36=12x+9
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-36x+36-12x=9
Subtract 12x from both sides.
5x^{2}-48x+36=9
Combine -36x and -12x to get -48x.
5x^{2}-48x=9-36
Subtract 36 from both sides.
5x^{2}-48x=-27
Subtract 36 from 9 to get -27.
\frac{5x^{2}-48x}{5}=-\frac{27}{5}
Divide both sides by 5.
x^{2}-\frac{48}{5}x=-\frac{27}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{48}{5}x+\left(-\frac{24}{5}\right)^{2}=-\frac{27}{5}+\left(-\frac{24}{5}\right)^{2}
Divide -\frac{48}{5}, the coefficient of the x term, by 2 to get -\frac{24}{5}. Then add the square of -\frac{24}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{48}{5}x+\frac{576}{25}=-\frac{27}{5}+\frac{576}{25}
Square -\frac{24}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{48}{5}x+\frac{576}{25}=\frac{441}{25}
Add -\frac{27}{5} to \frac{576}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{24}{5}\right)^{2}=\frac{441}{25}
Factor x^{2}-\frac{48}{5}x+\frac{576}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{24}{5}\right)^{2}}=\sqrt{\frac{441}{25}}
Take the square root of both sides of the equation.
x-\frac{24}{5}=\frac{21}{5} x-\frac{24}{5}=-\frac{21}{5}
Simplify.
x=9 x=\frac{3}{5}
Add \frac{24}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}